
Learning Concepts in Software Agents

Uma Ramamurthy*, Stan Franklin**, Aregahegn Negatu***
*St. Jude Children's Research Hospital1/University of Memphis

332 North Lauderdale, Memphis, TN 38105, U.S.A.
urmmrthy@memphis.edu
**University of Memphis2

Department of Mathematical Sciences, Memphis, TN 38152, U.S.A.
stan.franklin@memphis.edu

***University of Memphis
Department of Mathematical Sciences, Memphis, TN 38152, U.S.A.

negatua@msci.memphis.edu

1 First author supported in part by Cancer Center Support CORE Grant, P30 CA 21765 and by American Lebanese Syrian Associated

Charities (ALSAC).

2 Second author supported in part by NSF grant SBR-9720314 and by ONR grant N00014-98-1-0332

Abstract

This concept-paper explores issues related to
learning new concepts in software agents which
inhabit dynamic domains. We argue that agents
learn based on what they already know and agents
solve new problems which they encounter by
making analogies to previously solved problems of
similar type. We explore these issues within the
scope of the Cognitive Agent Architecture and
Theory (CAAT) [Franklin, 1997]. The architecture
of a multi-agent system, CMattie which is based on
the CAAT strategy and inhabits an email-based
dynamic domain, is described. CMattie gathers
information from humans, composes
announcements of next week's seminars, maintains
a mailing list, mails the weekly seminar
announcement to members of that mailing list, and
learns new variations to seminars and other such
events which have to be announced to the members
of the mailing list as her domain changes with new
types of seminar-like events. Learning
mechanisms being implemented in this system
which enable CMattie to adapt to her changing
domain are described. Through her learning,
CMattie acquires new domain-specific concepts,
thus adapting to her dynamic domain.

1. Introduction

Computer networks provide an infrastructure for an efficient
information exchange and processing; as a result they
improve individual and group performances. E-mail is one
of the most used tools that help people transfer and
manipulate information. In our academic setting, e-mail

service is so important that many standard activities are
based on it. Introducing intelligent agents into computer
systems can automate some simple and not so simple
routine organizational tasks so that human workers will be
freed from such routine but tedious work to concentrate on
some other higher-level and non-routine tasks.

1.1 Cognitive Agent Architecture and Theory
We have been participating in an intelligent system research
using the Cognitive Agent Architecture and Theory (CAAT)
strategy [Franklin, 1997]. Basic cognitive processes include
learning, memory (long term & short term), concept
formation, perception, attention, problem solving, decision-
making, thinking, etc. An autonomous agent that exhibits
many or most of these cognitive processes (functions) can
be referred to as a cognitive agent [Franklin, 1996]
[Franklin, 1997]. Agent architectures may be characterized
according to their capabilities (learning, planning, etc.), their
properties (learning: deliberative, reflexive, monatomic,
non-monatomic, etc.) and the nature of environments (static,
dynamic, etc.) and domains for which they are designed. In
general, agent architecture can be stated as a subset of a
system that contains and manages the underlying and
primitive resources of an agent. A methodical study of
these resources and their management will assist in
determining the necessary, sufficient and optimal
distribution of resources for the development of agents that
exhibit some type of intelligence.

In the design space [Sloman, 1995], we develop
specifications (what capabilities and what
properties/characteristics in each capability are needed for a
specific domain) for a control structure which in turn has
some type of underlying theory to support it. So, in CAAT
strategy, architecture design entails the creation of theories
of cognition to reinforce or modify existing theories or to
serve as a hypothesis for a new theory. Conversely, any

improvements in theory should lead to possible
enhancements of the architecture. This synergy between
theory and architecture should lead to productive
experimental work in artificial intelligence, cognitive
science and other related fields.

1.2 VMattie
VMattie is a software agent which gathers information from
humans, composes announcements of next week's seminars,
maintains a mailing list and mails the weekly seminar
announcement to members of that mailing list, all without
human supervision. VMattie "lives" in a UNIX-based
system. It is an intelligent software agent living in a
complex dynamic environment, with multiple high-level
perceptions and actions satisfying many drives.

VMattie is a multiagent system with all internal actions
accomplished by microagents called codelets. VMattie's
architecture is based on multi-layer, feed-forward neural
network based categorization mechanism and Behavior
Networks [Maes, 1989] [Maes, 1990]. The Behavior
Networks component of VMattie is actually an extension of
the classic Behavior Networks. Using the Behavior
Networks component, VMattie deals with message

variables, with variable drives and with activation from
internal states, thus providing informal planning and action
selection in this system. The message understanding module
of VMattie is composed of a feed-forward neural network
mechanism working with codelets to achieve the natural
language understanding within a narrow-domain when
VMattie perceives its input, namely incoming mail
messages.

In VMattie's architecture shown in Figure 1, the three
units -- Drives, Behavior Network and Attention Registers -
- form the action-selection module with important
extensions. Each behavior is implemented by a collection of
codelets. The two units -- Input Processing Knowledge and

Input Processing Workspace along with the associated
codelets -- form the message understanding module of
VMattie.

Several distinct drives operate in parallel in this system.
The salient ones amongst these drives are:
1. To understand every incoming mail message,
2. To acknowledge every incoming mail message,
3. To maintain complete information on every ongoing

seminar (in its Tracking Knowledge Base),
4. To keep the mailing list current, and
5. To mail out the weekly seminar announcements on

time.
The urgency of these drives varies with incoming mail

messages and the nearing of the time for mailing the weekly
seminar announcements. This variation in drive-urgency is
an enhancement over the classic Behavior Network
architecture. Drives provide activation to behaviors.

The behavior net consists of various behaviors with their
associated links: successor links, predecessor links and
conflictor links [Maes, 1989]. In VMattie, behaviors get
instantiated, thus supporting variables. For example, the
add-address-to-list behavior asks which address to add to
the list. The behaviors consist of preconditions, activation,
add-list and delete-list accommodating variables in the

contents of any of these. Activation spreads through the
instantiated behaviors.

Attention Registers hold information extracted from an
incoming mail message. Each register holds the content of a
field, so that codelets which need it can get it from the
Attention Registers. Such fields include name-of-the-
organizer, email-address, seminar-name, etc. When filled,
Attention Registers provide activation to behaviors that can
use their contents.

The Input Processing Knowledge holds the declarative
knowledge needed to understand the incoming mail
messages. For example, it knows the various forms of
"Wednesday" -- Wed., wed., Wednesday, etc., and the

Figure 1: VMattie's Architecture

names of the buildings where seminars are held. Input
Processing Workspace holds the contents of an incoming
mail message while codelets associated with the Workspace
attempt to understand the mail message and intermittent
results. In regular consultation with the Input Processing
Knowledge, inferences are made. The most significant
inference of all is the type of the incoming mail message.
Once an incoming mail message is understood -- every
significant phrase or word is given a field name and the type
of the incoming mail message is inferred, then the primitive
codelets transfer this information to the Attention Registers.
Primitive codelets are not directly connected to any
behavior or neural network node, and perform housekeeping
functions in the VMattie system.

The Tracking Knowledge Base unit holds information
used in composing outgoing mail messages. Examples of
such information are default data for ongoing seminars as
regards the name of the seminar, the organizer of the
seminar, the usual seminar time and place. Behaviors update
the default data. This unit maintains the mailing list for
announcements with help from behaviors. The Tracking
Knowledge Base also holds the templates for the different
types of outgoing mail messages from the VMattie system.

The outgoing mail messages are composed in the
Composition Workspace. In this unit, choosing of the
template and filling the appropriate fields takes place. The
information for the composition comes from the Tracking
Knowledge Base and the Attention Registers.

2. CMattie

CMattie is the next experiment under the CAAT strategy.
CMattie "lives" in a UNIX-based system. She is a software

agent that gathers information from humans, composes
announcements of the next week's seminars, maintains a

mailing list and mails the weekly seminar announcements to
members of that mailing list, all without human supervision.

In CMattie, new mechanisms have been added to the
VMattie's architecture. This has resulted in a modified, more
complex architecture for CMattie (shown in Figure 2).
CMattie has a limited capacity Global Workspace [Baars,
1988] which is capable of broadcasting to all the processes.
An attention mechanism, the Spotlight, controls access to
the Global Workspace of coalition of processes.

CMattie has memories based on Sparse Distributed
Memory architecture [Kanerva, 1988] and case-based
memory [Kolodner, 1993]. CMattie has an emotional
mechanism that enables her to be emotional when
appropriate. CMattie has a sense of self-preservation which
enables her to be concerned with her environment, namely
her resource needs and the status of the UNIX-based system
that she "lives" in. Most important of all, CMattie learns.
She learns new concepts and new behaviors related to those
newly learnt concepts in her dynamic domain.

CMattie has an episodic memory which acts as an
intermediate memory. This is a case-based memory system.
In her episodic memory, she stores sequences of mail
messages that form episodes in her domain. Using this
episodic memory, she can relate to new events which are
similar to past events in her domain and which she is
capable of understanding from her built-in domain
knowledge. This memory acts as intermediate memory as
information stored here is used in learning domain
knowledge and if found relevant to the overall drives of the
system, the information is passed on to the long-term
memory of the system, the Sparse Distributed Memory.

Due to the very nature of her domain, namely,
interaction through mail messages, reinforcement learning is

b

best suited for many of CMattie's learning mechanisms.
Reinforcement learning [Kaelbling, 1996] is a trial and error
approach to learning. The agent learns by adjusting the

Figure 2: CMattie's Architecture

mapping from her domain states to her actions based on
positive and or negative feedbacks. CMattie has built-in
domain knowledge and built-in behaviors. When her
domain changes, she attempts to interpret the new events in
her domain in terms of her built-in knowledge and
behaviors. This elicits some feedback from the members on
her mailing list who send her mail messages. Based on that
feedback, CMattie learns that she needs to modify some of
the concepts in her domain knowledge, thus creating new
concepts and further, new behaviors.

The various aspects of learning in CMattie are outlined
below:
1. Associative learning in the codelets or processes based

on Pandemonium Theory [Jackson, 1987].
2. Learning occurs automatically in the Sparse Distributed

Memory architecture which is being used as long-term
memory in CMattie.

3. The Slipnet in CMattie's Perception Module forms part
of her built-in domain knowledge. CMattie learns new
Slipnet nodes and fits them into her existing Slipnet.

4. For the new Slipnet nodes, CMattie learns associated
new codelets.

5. When a change occurs in CMattie's domain knowledge,
most often it calls for new behaviors. Based on the
changes in her domain knowledge and feedback from
her environment, she modifies her existing behaviors to
learn new behaviors for her action-selection.

The last three mechanisms of learning in the CMattie
system listed above are some form of reinforcement
learning. In this paper, we focus on learning mechanisms for
items (3) and (4) above.

3. Perceptual Learning

The Perception Module of CMattie is based on the Copycat
architecture [Mitchell, 1993]. The Copycat system is based
on the thesis that analogy-making lies at the core of
understanding and analogy-making is itself a process of
high-level perception. The Copycat system interprets and
makes analogies between situations in an idealized
microworld involving letter-string analogy problems. The
basic objects in this microworld are the 26 letters of the
alphabet. A typical analogy problem in this world is as
below:

abc → abd
ijk → ?

i.e., one is given the change from string abc to the string
abd and asked to come up with a similar change for the
target string ijk.

Copycat's architecture consists of 4 parts: (1) The
Slipnet, (2) Workspace, (3) Pool of Codelets, and (4)
Temperature. The Slipnet is a network of nodes and links
which represent the permanent concepts of the system.
Copycat builds perceptual structures in the Workspace to
represent the system's current understanding of the given
analogy problem. The Pool of Codelets consists of various
perceptual and higher-level structuring agents called

Codelets, waiting to run. A codelet is a small piece of code
that carries out some local task. These agents build and
sometimes destroy the perceptual structures in the
Workspace. The Temperature measures the amount of
disorganization or entropy in the system's understanding of
the given analogy problem and controls the degree of
randomness used in making decisions.

The domain of the Copycat system is predefined and
fixed. Hence there is no learning in this system. On the
contrary, CMattie "lives" in a dynamic domain. As her
domain changes, to enable her to perceive this dynamism,
she learns new concepts in her Perception Module.

3.1 Concepts and Features
Concepts are objects or logical units of ideas that are used to
represent entities. In the domain of CMattie, Seminar,
Seminar Organizer, E-mail Address, Periodicity, Location,
Title of Talk, etc. are considered concepts. Such concepts
need to be represented in such a way that cognitive
processes relevant in the domain will manipulate these
concepts effectively.

In CMattie, concepts are manipulated continuously.
After sensing raw data from the environment, a perceptual
cognitive activity takes place. The perception involves
building of instances of known concepts, detection and
creation of new concepts, making appropriate relations
among concepts. In our design, we like to have a simple
conceptual representation, yet powerful enough to be used
in a relatively complex domain. The basic characteristics of
a concept are represented by its features or attributes. In a
given situation, a feature of a concept has a specific measure
called “value”. For instance, a “seminar” concept has a
feature called “name” whose values could be “Complex
System” or “Cognitive Sciences”. A concept may have
more than one feature. The same “seminar” concept can
have another feature called “organizer” whose values could
be “S. Franklin” or “M. Garzon”. A concept can be a
feature for another concept. For instance, “organizer”
which is a feature of the “seminar” concept is by itself a
concept which has a feature called “e-mail address” with a
value, say “franklin@msci.memphis.edu.”

In CMattie, concepts are defined not necessarily by a
single node in the Slipnet of her Perception Module. A
concept has a core and a set of features. Each of these may
be individual nodes or group of nodes. The various nodes of
the Slipnet are connected to one another through weighted
links between them. One of the concepts in CMattie's built-
in domain knowledge is the Seminar. The Seminar
concept has the following features:
• Name of the seminar
• Organizer of the seminar
• Location where the seminar will be held
• Date of the seminar
• Day of the seminar
• Time at which the seminar will be held
• Speaker of the seminar
• Title of talk for the seminar

• Periodicity of the seminar
In Figure 3, a small segment of the Slipnet from the

Perception Module of CMattie is shown. The direction of
the links indicates the possible spread of activation between
the nodes.

As can be seen from the above figure, Time is a feature

of the Seminar concept. But Time by itself is also a
concept with a set of its own features. The concept
Seminar is much deeper and has a higher depth value than
the concept Time. The links are weighted and these weights
aid in reinforcement learning in the Slipnet.

Next question we need to ask is “how does CMattie learn
new concepts ?”

3.2 Learning new Concepts
CMattie's senses are the mail messages she receives. In her
Perception Module, the Slipnet contains most of her domain
knowledge. Using this domain knowledge, she understands
the input, namely mail messages, sent to the CMattie
system. This understanding process occurs in the Perceptual
Working Memory through limited amount of natural
language understanding. Through her built-in domain
knowledge, CMattie is capable of understanding different
types of messages related to the mailing list she maintains
and messages related to seminars.

CMattie has a limited number of seminars already
defined in her Slipnet. CMattie "knows" about these
seminars through the built-in seminar concept and its
features: She "knows" --

• a seminar is held once a week;
• it has an organizer and a name;
• each week, it might have a different speaker;
• it has a different title-of-talk;
• it is usually held at the same location, on the same

day of the week and at the same time, unless stated
otherwise.

When a Seminar-Organizer sends her a message
announcing a seminar with a seminar name that she has
never seen before, she attempts to treat such a message as
similar to seminars that she already knows. The learning
mechanism here is based on the premise that the agent

learns based on what it already knows. When the message
understanding mechanism in the Perception Module
attempts understanding this message, the system recognizes
that it is a initiate-seminar-message for a seminar, but the
name of this seminar is not part of the built-in domain
knowledge. In such a situation, CMattie has built-in
mechanisms to converse with the sender of the message to
determine if the sender wishes to initialize a new seminar.
She sends an acknowledgement to the sender of the message
stating that a new seminar with that seminar name will be
initialized in the system, with the sender as the organizer for
that seminar. Reinforcement is provided to CMattie by the
response she might or might not get for such an
acknowledgement. Based on such a feedback, she creates a
new node for this seminar name and links it to the name
node (which is also a feature of the seminar concept) in the
Slipnet. When a new node is generated, the underlying
codelets for that node are generated as well. This process is
quite straight forward, as the new codelets are based on
existing similar codelets for other seminar name nodes.
Once this process is complete, CMattie has understood the
incoming message and the Perception Module sends the
relevant fields from the understood message to the
Perception Registers.

The second type of learning which takes place in the
Perception Module is when CMattie learns concepts which
are not completely identical to the built-in seminar concept,
but slightly different from it. In CMattie's domain, the
Colloquia, Dissertation Defenses, Dissertation Committee
Meetings, Faculty Meetings fall in the category of concepts
which are not totally identical to the seminar concept. This
learning mechanism is based on the premise that every new

Figure 3: Some nodes and weighted links in CMattie's Slipnet

situation/problem is viewed by the agent in terms of a
previously solved problem (analogy-making). When
CMattie receives a message of such a non-seminar event,
say a Colloquium, she treats it as a speaker-topic message
for a seminar. She sends an acknowledgement to the sender
stating that she is initializing a new seminar by the name
"Colloquium Seminar" in the system and the sender is the
organizer for this seminar. This misunderstanding effects
one or more of the following events dependent on the
sender:
• The wrong acknowledgement might elicit a negative

response from the sender, starting an episode. The
"conversation" between CMattie and the sender is
stored in the case-based memory system of the
Perception Module as an episode. This episode provides
the reinforcement and along with the limited natural
language understanding based on this episode, CMattie
learns that Colloquium is similar to the seminar concept
with slightly different features. In the case of
colloquium, the periodicity feature has a different
value. CMattie learns that through reinforcement from
her domain.

• The sender might ignore this wrong acknowledgement
and CMattie includes the Colloquium Seminar in her
weekly seminar announcement.

• CMattie sends out the weekly seminar announcement
with the Colloquium Seminar listed in it. That
announcement might elicit a negative message from the
sender of the original Colloquium message, starting a
"conversation" between CMattie and the sender. This
episode is stored in CMattie's case-based memory to aid
in her learning what a colloquium is.

• The sender of the original Colloquium message might
ignore the weekly announcement with the Colloquium
Seminar listed in it. But he/she might respond to the
reminder sent by CMattie the following week, when
CMattie doesn't receive a speaker-topic message for
the Colloquium Seminar. This, again, generates an
episode aiding CMattie to learn about a colloquium.

• The sender of the original Colloquium message ignores
all the reminders. This acts as a feedback to the CMattie
system to modify the periodicity feature of the seminar
concept, giving rise to a new concept which is similar
to the seminar concept with a modified set of feature-
values.

Irrespective of which of the above events occur, CMattie
eventually learns the new concept called Colloquium which
is closely related to the seminar concept. This concept is of
the same depth as the seminar concept with a modified set
of features. CMattie also learns related new codelets for the
colloquium concept, by copying and modifying the codelets
for the built-in seminar concept, to be able to correctly
perceive and understand a Colloquium message when she
receives one the next time.

4. Conclusions

In this paper, we briefly described the architecture of a
software agent, CMattie, whose design considerations are
based on the CAAT strategy. We also showed how CMattie
learns new concepts to adapt to her dynamic domain. Our
focus here was to discuss perceptual learning to detect
changes in her domain, generate new concepts in CMattie's
domain knowledge so as to enable her to respond
appropriately to novel situations in her domain. The learning
mechanisms are based on the premises: (1) Agents learn
from what they already know, and (2) Every new
situation/problem is viewed in terms of a previously solved
problem. At the time of writing this paper, the VMattie
system has completed preliminary testing and is starting on
a beta test and the CMattie system is being implemented.
We plan to focus on issues related to unlearning in the
future stages of this project.

References

Bernard J. Baars. (1988). "A Cognitive Theory of

Consciousness", Cambridge University Press.
Stan Franklin. (1995). "Artificial Minds", MIT Press.
Stan Franklin and Art Graesser. (1996). "Is it an Agent, or

just a Program?: A Taxonomy for Autonomous Agents",
Proceedings of the Third International Workshop on
Agent Theories, Architectures and Languages, Springer-
Verlag.

Stan Franklin. (1997). "Autonomous Agents as Embodied
AI," Cybernetics and Systems, special issue on
Epistemological Issues in Embodied AI, 28 p. 499-520.

John V. Jackson. (1987). "Idea for a Mind", SIGART
Newsletter, No. 181, July 1987, p. 23-26.

Leslie Pack Kaelbling, Michael L. Littman, Andrew W.
Moore. (1996). "Reinforcement Learning: A Survey",
Journal of Artificial Intelligence Research 4 p. 237-285.

Pentti Kanerva. (1988). "Sparse Distributed Memory", MIT
Press.

Janet Kolodner. (1993). "Case-based Reasoning", Morgan
Kaufmann Publishers.

Pattie Maes. (1989). "How to do the right thing",
Connection Science Journal, Vol. 1, No. 3, March 1989.

Pattie Maes and Rodney A. Brooks. (1990). "Learning to
Coordinate Behaviors", Proceedings of the Eighth
National Conference on Artificial Intelligence, AAAI
Press/MIT Press, p. 796-802.

Melanie Mitchell. (1993). "Analogy-Making as Perception",
MIT Press.

Aaron Sloman. (1995). "Exploring Design Space and Niche
Space", Proceedings of the Fifth Scandinavian
Conference on AI, Trondheim, May 1995, Amsterdam:
IOS Press.

Hongjun Song and Stan Franklin (forthcoming), Action
Selection using Behavior Instantiation.

