
Modified Sparse Distributed Memory
as Transient Episodic Memory for

Cognitive Software Agents*

Uma Ramamurthy, Sidney K. D’Mello and Stan Franklin
Computer Science Division and Institute for Intelligent Systems,

The University of Memphis, Memphis, TN 38152, USA.
urmmrthy@memphis.edu, sdmello@memphis.edu, and franklin@memphis.edu

* 0-7803-8566-7/04/$20.00 © 2004 IEEE.

Abstract - This paper presents a Modified Sparse
Distributed Memory architecture for use in software
agents with natural language processing capabilities. We
have modified Kanerva’s Sparse Distributed Memory
(SDM) into an architecture with a ternary memory space.
This enables the memory to be used in IDA, the Intelligent
Distribution Agent built for the U.S. Navy. IDA
implements Baars’ global workspace theory, a
psychological theory of consciousness. As a result, it can
react to novel and problematic situations in a more
flexible, more human-like way than traditional AI
systems. IDA performs a function, namely billet
assignment, heretofore reserved for humans. We argue
that such flexibility requires advanced memory systems
such as transient episodic memory and auto-biographical
memory. Here, we present the architecture, tests and
results of this modified SDM system which can be used as
a transient episodic memory in suitable software agents.

Keywords: Transient Episodic Memory, Cognitive
Modeling, Software Agents, Modified Sparse
Distributed Memory.

1 Introduction
 An autonomous agent is a system situated in, and
part of an environment. It senses that environment, and
acts on it, over time, in pursuit of its own agenda [11].
Cognitive Agents are autonomous agents that have
cognitive features like multiple senses, perception,
working memory, transient episodic memory, declarative
memory, attention, planning, reasoning, problem solving,
learning, emotions, moods, attitudes, multiple drives, etc.,
[8]. One way to design such cognitive agents is to model
them after humans. We have designed and implemented
such cognitive agents within the constraints of the Global
Workspace theory of consciousness, a psychological
theory that gives a high-level, abstract account of human
consciousness and broadly sketches its architecture [2],
[3]. We call such agents “conscious” software agents.

Global workspace theory postulates that human
cognition is implemented by a multitude of relatively
small, special purpose processors, almost always
unconscious. Coalitions of such processors find their way
into a global workspace and hence into consciousness.
This limited capacity workspace serves to broadcast the

message of the coalition to all the unconscious
processors, in order to recruit other processors to join in
handling the current novel situation, or in solving the
current problem. Conscious software agents should
implement the major parts of the theory, and should
always stay within its constraints. IDA is one such
“conscious” software agent.

1.1 IDA’s Architecture
 IDA (Intelligent Distribution Agent) is a cognitive
software agent [8] developed for the U.S. Navy. At the
end of each sailor’s tour of duty, he or she is assigned to a
new billet by a person called a detailer. IDA’s task is to
facilitate this process, by completely automating the role
of a detailer. The IDA model [9] has a number of
different memory systems, including working memory,
transient episodic memory and auto-
biographical/declarative memory. Some of these
memories are motivated by Sparse Distributed Memory
[12]. The focus of this paper is on a transient episodic
memory for software agents such as IDA.

2 Transient Episodic Memory
 Episodic memory is for events having features of a
particular time and place [5]. This memory system is
associative in nature and content-addressable. It has been
proposed that working memory probably includes an
episodic buffer that can hold episodic information for a
short duration [4].

Humans have a content-addressable, associative,
transient episodic memory with a decay rate measured in
hours [6], [10]. Humans are able to recall in great detail
events of the current day – where they park their cars,
whom they met that morning, what they discussed, what
they had for meals, etc. These details of the
events/episodes stay with us only for short durations – for
some hours. We hypothesize that for cognitive agents to
recall such details of episodes while they interact with
and adapt to their dynamic environments, they need a
transient episodic memory (TEM). The IDA cognitive
model has a TEM with a decay rate measured in hours.
We hypothesize that information stored in this memory

y

y1

y2

y3

y’
y4

x

x1

x5

x3

x4

x2

Critical Distance

which has not decayed away, is consolidated into
declarative memory at certain intervals. In this paper, we
describe a modified SDM architecture that works as a
TEM for cognitive software agents such as IDA. We
present the implementation and test results of such a
modified SDM architecture.

2.1 Sparse Distributed Memory
 Transient episodic and declarative memories have
distributed representations in IDA. There is evidence that
this is also the case in the animal nervous systems. In
IDA, these two memory systems are implemented
computationally using a modified version of Kanerva’s
Sparse Distributed Memory (SDM) architecture [12], [1].

SDM implements a content addressable random
access memory. Its address space is enormous, of the
order of 21000. Of this space, you choose a manageable,
uniform random sample, say 220, of allowable locations.
These are called hard locations. Thus the hard locations
are sparse in this address space. Many hard locations
participate in storing and retrieving of any datum,
resulting in the distributed nature of this architecture.
Hamming distance is used to measure the distance
between any two points in this memory space.

Each hard location is a bit vector of length 1000,
storing data in 1000 counters with a range of -40 to 40.
Each datum to be written to SDM is a bit vector of length
1000. Writing 1 to a counter results in incrementing the
counter, while writing a 0 decrements the counter. To
write in this memory architecture, you select an access
sphere centered at location X. So, to write a datum to X,
you simply write to all the hard locations (roughly a 1000
of them) within X’s access sphere. This results in
distributed storage. This also provides naturally for
memory rehearsal – a memory trace being rehearsed can
be written many times and each time to about 1000
locations.

To read/retrieve from location Y, you compute the
bit vector read at Y – by assigning its kth bit the value 1 or
0, based on Y’s kth counter being positive or negative.
Hence each bit of the bit vector read at Y is a majority
rule decision of all the data that have been written at Y.
Effectively, the read data at Y is an aggregate of all data
that have been written to Y, but may not be any of them
exactly. Similar to writing, retrieving from SDM involves
the same concept of access sphere – you read all the hard
locations within the access sphere of location Y, pool the
bit vectors read from all these hard locations and let each
of the kth bits of those locations participate in a majority
vote for the kth bit of Y. Effectively, you reconstruct the
memory trace in every retrieval operation.

This memory can be cued with noisy versions of the
original memory trace. To accomplish this, you employ
iterated reading – first read at Y to obtain the bit vector,

Y1. Next read at Y1 to obtain the bit vector Y2. Next
read at Y2 to obtain the bit vector, Y3. This is shown in
Figure 1 below. If this sequence of reads converges to Y',
then Y' is the result of iterated reading at Y. Convergence
happens very rapidly in this architecture, while
divergence is indicated by an iterated read that bounces
erratically and out of the access sphere in this address
space.

Figure 1. Converging/Diverging Reads [12]

Memory recall is a constructive process, supported
by evidence from psychology and imaging studies [14].
The SDM architecture has several similarities with
human memory [12] and provides for “reconstructed
memory” in its retrieval process.

2.2 Rationale for the Modified SDM
 Experiments on our implementation of Kanerva’s
original SDM for cognitive agents such as IDA in a text-
based domain indicated the need for an architecture
modification. When events are unfolding, the feature
vector is not always complete. So, more often, the agent
has to write partial feature-sets to its memories. Similarly,
when the agent cues its memory for retrieval, the read-
cues are often partial feature-sets.

We propose a modification to a ternary memory
space while maintaining a binary address space for the
hard locations. Adding “don’t cares” (*) to the 0’s and
1’s of binary space yields a ternary memory space. This
will accommodate flexible cuing with fewer features than
the actual memory trace where missing features are
represented by “don’t cares” (*). An adjustment was
made to Hamming distance calculations such that the
distance between a “don’t care” (*) and a 0 or 1 was set
to (0.5).

Figure 2. The Modified SDM Architecture (Abstract classes are italicized, steps are numbered)

This modification to the memory space also
addresses two essential features of episodic memory
systems [14]. Episodic memory systems must have
binding-error detectors and binding-error integrators.
Given an event, the episodic memory trace must respond
not only to partial cues, it should also be capable of
separating a memorized event from very similar events.

Recalling a similar event, but with an explicit feel
for the mismatch is a salient feature of episodic memory.
For example, when the agent is cued with “Anthony
invited his friend Barbara to brunch in the canteen at 12-
noon”, it retrieves a similar memorized event: “Anthony
invited his friend Brianna to lunch in the cafeteria”. In the
IDA model, when a cue retrieves a similar event but not
the original memorized event, the attention mechanism
watching the retrieved trace brings it to “consciousness”
and thus, the agent is aware of the mismatch [9].

With the original SDM, testing for binding-error
detectors and integrators in the IDA model’s textual
domain produced minimal results. As will be seen in the
Experimental Analysis section, the Modified SDM
produces an order of magnitude improvement in
performance. For software agents that have sensory
inputs in natural language, we argue that such a Modified
SDM provides a flexible and robust way to represent
domain knowledge of the agent for storage and retrieval.

In our design and implementation of this system, we have
ensured a generic design that can easily be tailored for use
in other cognitive software agents irrespective of the
domains they ‘live’ in.

3 Design and Implementation
 The Modified SDM software was designed to be
general enough to facilitate its use as a transient episodic
memory in a variety of software agents. The design
follows the Object Oriented Paradigm and several of the
classes are abstract to enable future architectural
extensions. A simplified version of the design is presented
in Figure 2 above.

3.1 Core Modules
The Focus is the central point of interaction between

the memory and the outside world. It is an interface
whose implementation determines the behavior of the
memory. Therefore, integrating the Modified SDM
software into new domains is as simple as implementing a
new Focus.

A Bit Counter counts the frequencies of 1’s, 0’s and
*’s (“don’t cares”) for a single dimension for a single hard
location. A vector of ternary Bit Counters and a binary

FOCUS

CHARACTER
MAPPER TRANSLATOR READ TRACE READ

RETURN

MEMORY

MEMORY
INITIALIZER

ACCESS
RADIUS

ESTIMATOR

INTERSECTION
ANALYSIS

WRITE
ANALYSIS

HARD
LOCATION

BIT
COUNTER

INITIALIZATION TOOLS ANALYSIS TOOLS

1

2
3

4

5

6

8

7

910

1112
13

14

address space constitute a Hard Location. The Memory
itself is a set of Hard Locations.

A Character Mapper maps a single character into a
set of bits (binary or ternary). A Translator converts the
memory-write or read-cue into a content addressable
vector as specified by its internal Character Mapper.

A Read Return maintains pertinent information for a
single read iteration. The Read Trace stores a predefined
number of Read Returns (usually 10 or fewer in case of
convergence or divergence) and can recreate the entire
trace for offline analyses.

3.2 Initialization and Analysis Modules
The Memory Initializer is an abstract class which

can be extended to allow different initialization
techniques such as a random, uniform, or domain based
distribution of the hard locations. The Access Radius
Estimator is used to tune the access radius for an
initialized memory.

The Intersection Analysis tools implement an
algorithm that efficiently measures the intersection
between the access spheres for different memory-writes.
The Write Analysis tool periodically monitors the
memory and records various statistics regarding the
activity of the hard locations.

3.3 Writing and Reading
For writing, the Focus intercepts the memory write

and sends it to the Translator who creates a bit vector by
consulting its Character Mapper. The Bit Counters of the
Hard Locations within the access sphere of the vector are
updated. The writing process can be traced by Steps 1 – 6
in Figure 2.

The first 5 steps for reading are identical to writing.
In steps 6-8, a Read Return object is created from the
retrieved vector obtained by pooling the Hard Locations
within the access sphere for the bit vector of the read-cue.
Convergence or divergence testing is then performed and
the vector may be sent back to the Memory for the next
iteration (Step 10). It is also registered to the Read Trace
(Step 11) and is converted back into text (Steps 12 – 13).

4 Experimental Analysis and Results
For testing this Modified SDM, we chose a case-

grammar based feature vector [7]. The focus of our
testing was to evaluate the Modified SDM’s performance
when the memory writes are done with either complete or
partial feature sets. Retrieval was tested with fully
specified read-cues, partial read-cues and finally, read-
cues with a feature replaced with an incorrect feature in
order to test binding-error detection, over both types of
writes.

4.1 Experimental Setup
The memory was randomly initialized with 10,000

hard locations as earlier testing with a varying numbers of
hard locations ranging from 500 to 50,000 did not show a
significant performance improvement after 10,000. The
dimensionality of the memory space was set at 448 based
on the case-grammar template used for the testing. The
case-grammar template selected is illustrated in Figure 3,
with examples of fully specified feature-sets and partially
specified feature-sets representing episodes.

4.2 Tests Conducted
Two issues related to transient episodic memory

were addressed in the testing phase, retrieval with partial
cues, and retrieval with cues in which a feature is replaced
with an incorrect feature to simulate a binding-error.

TEMPLATE:
 “Agent | Verb | Recipient-Adjective | Recipient |
 Object-Adjective | Object | Place | Time”

EXAMPLES:
TESTS A & A′: “Richard | drives | joyful | Vanessa|
 lively | comedy | Theatre | Friday”

TESTS B & B′: “Richard | drives | * | * |

 lively | comedy | * | Friday”

 Figure 3. Case-grammar template & example episodes of

fully-specified and partial feature sets

The tests were divided on the basis of two types of
writes made to memory. The first set (Test-A in the
original SDM and Test-A′ in the modified SDM)
consisted of completely specified feature-sets. An
example episode: “Nathan accepts elated Michael venture
scheme eatery Tuesday”. The second set (Test-B in the
original SDM and Test-B′ in the modified SDM) of writes
was composed of partial feature-sets with 75 percent of
the features specified. “Nathan accepts * Michael venture
scheme eatery *” is an example of a partial memory-write
for the second set. Here, the recipient-adjective and the
time features have been replaced with “don’t cares” (*).

Five different types of read-cues with varying
percentages of missing features were constructed to
evaluate the retrieval from memory for each of these two
sets of writes. The first set (R1) consists of complete
read-cues that were identical to the writes. The second,
third and fourth sets (R2, R3 and R4) were partial read-
cues that consist of 87.5%, 75% and 62.5%-50% of the
feature-sets respectively. An example of one of these
partial read-cues is “Nathan accepts * Michael venture *
eatery *” which contains 62.5% of the feature-set.

The above four sets of read-cues addressed the first
issue of retrieval with partial cues. The fifth set (R5) of

Performance over Reads

0

0.2

0.4

0.6

0.8

1

R1 R2 R3 R4

Reads

Performance

Test-A'

Test-B'
Test-A
Test-B

read-cues had a feature replaced with an incorrect feature
to simulate a binding-error. For example, “Andrew
accepts elated Michael venture scheme eatery Tuesday”
would be the read-cue for the fully specified write
mentioned above. Here the agent feature ‘Nathan’ is
replaced with an incorrect feature ‘Andrew’. Each of the
five sets of read-cues was tested for retrieval on both sets
of writes for both the original and the Modified SDM.

4.3 Results and Discussion
The tests were evaluated by the number of features

fully recovered in the retrieval. A feature was considered
to be fully retrievable if no more than two of its characters
were incorrect and hence can be recovered fully with
post-processing. The scoring of the retrieved episodes was
based on the following scale: (1) all features fully
retrieved scored as 1.0; (2) all but one feature fully
retrieved scored as 0.75; (3) all but two features fully
retrieved scored as 0.5; (4) retrievals with more than two
irretrievable features or diverged reads were scored as 0.
The overall score for each test was the average over the
total number of episodes written.

Table 1 shows the scores for five sets of read-cues --
R1 for complete read-cues, R2-R4 for partial read-cues
and R5 for binding-error detection. The plot in Figure 4
shows the performance comparison between the original
SDM and the Modified SDM for the four sets of read-
cues, namely R1-R4.

Table 1. Test Scores

Extension of the content-space to include the “don’t

cares” (*) provides a significant improvement as the
percentage of missing features in the read-cues increases
to a reasonable degree. For Test-A′, the performance
score dropped from 97% to 33% as the percentage of
missing features in the read-cues increased from zero to
50 percent. The performance score dropped from 100% to
67% for Test-B′ as the percentage of missing features in
the read-cues increased from zero to 50 percent. This
indicates that doing partial-writes is advantageous as
“don’t cares” effect more rapid convergences, due to the
modification to the Hamming distance calculation.

This is also true in the case of binding-error
detection as can be seen from the scores (R5). In Test-B′,
the performance score was much higher (93%) compared
to Test-A′ (56%).

Table 1 also shows that for fully specified feature
sets in both the writes and read-cues (R1), there is very
little performance difference between the original SDM
and the Modified SDM. Although Table 1 indicates that
Test B performed slightly better for R4 than for R3, this is
attributed to random initialization. The Modified SDM
exhibits better performance in comparison to the original
SDM with partial writes and partial read-cues.

Figure 4. Performance of Modified SDM vs. Original

SDM

The Modified SDM showed clear convergences

(illustrated in Figure 1) both with partial read-cues and
with binding-errors in read-cues. We saw interesting
associations between related episodes. Figure 5 shows an

Figure 5. Convergence with a highly partial read-cue

example of one such iterated read trace of a highly partial
read-cue retrieving an associated episode. “Don’t cares”
are represented with “*” in the example run. The column
of numbers is the modified Hamming distance between
the iterated retrievals. The set of strings next to this
column shows the iterative reads that resulted in the
convergence.

Figure 6 shows an example of binding-error
detection. The agent feature in the read-cue “Roberto” is
an incorrect feature for agent “Richard” of the original
memory trace, simulating the binding-error.

Original SDM Modified SDM Read-
Cue
Sets Test-A Test-B Test-A′ Test-B′
R1 0.958333 0.986111 0.972222 1
R2 0.569444 0.097222 0.75 0.972222
R3 0.069444 0 0.513889 0.916667
R4 0 0.055556 0.333333 0.666667
R5 0.263889 0.069444 0.555556 0.930556

Read-Cue= * informs * Nathan * * * Tuesday
Target = Nathan accepts elated Michael venture scheme eatery *

41.5 * kowwms * Niwhand * swmwmmp * uwemo
32.5 * oowee` * Nighcne * swuwep giwurmp uwemo
44.5 Fithcna eokoee * Nachan` * sgufew Fiwurm` uwemo
41.0 Fathan` aocnee` kowwm~ Nachag` * sofgee gaterm uwemo
21.5 Nathan` ancgqe` cmuumd Nachag` * sabgee eatery uwemo
19.0 Navhan` ancgqes cmuumd Nichag` w sa`gee eatery uwemo
18.5 Nathan` aocgpes cmqumd Oichagh wew}we sa`gee eatery
20.5 Nathan aocepes amqumd Michael veovure sc`eee eatery
18.0 Nathan accepus emated Michael venture scheme eatery *
 2.5 Nathan accepts elated Michael venture scheme eatery *

Figure 6. Convergence with binding-error in read-cue

5 Future Work and Conclusions
In the current version of the Modified SDM, we

have used random initialization as per Kanerva’s original
architecture [12]. Given the memory and computational
constraints of the computing systems that software agents
‘reside’ in and hence, the constraints on the number of
hard locations that such agents’ TEM can have, we
hypothesize that domain-based initialization mechanisms
for the Modified SDM will further improve the system
performance. Such focused initialization may well result
in faster and better convergence in the retrieval process.
In our future work, we will explore these mechanisms.
Further, we plan to implement decay in TEM and
implement the consolidation mechanism between the
TEM and the declarative memory (based on the SDM
architecture) of systems like IDA.

We have presented a Modified version of the Sparse
Distributed Memory system for use in text-based software
agents that require the cognitive functionality of transient
episodic memory. This modified version promises
significant improvement over the original SDM
architecture for software agents that interact with their
environments in natural language via email and other
messaging systems.

6 Acknowledgement
The first author is supported in part by NIH Cancer

Center Support CORE grant, P30 CA-21765 and by the
American Lebanese Syrian Associated Charities
(ALSAC). The authors acknowledge the support of Igor
Beliaev, Dr. Junmei Zhu and the Conscious Software
Research Group.

References
[1] Anwar, A., and S. Franklin. (2003) Sparse
Distributed Memory for "Conscious" Software Agents.
Cognitive Systems Research 4:339-354.

[2] Baars, Bernard J. (1988) “A Cognitive Theory of
Consciousness,” Cambridge: Cambridge University Press.

[3] Baars, Bernard J. (1997) “In the Theater of
Consciousness,” Oxford: Oxford University Press.

[4] Baddeley, A. D. (2000) The episodic buffer: a new
component of working memory? Trends in Cognitive
Science 4:417-423.

[5] Baddeley, A., M. Conway, and J. Aggleton. (2001)
Episodic Memory. Oxford: Oxford University Press.

[6] Conway, M. A. (2001) Sensory-perceptual episodic
memory and its context: autobiographical memory. In
Episodic Memory, ed. A. Baddeley, M. Conway, and
J. Aggleton. Oxford: Oxford University Press.

[7] Fillmore, C. (1968) The case for case. In Universals
in Linguistic Theory, ed. E. Bach, and R. T. Harms. New
York: Holt, Rinehart and Wilson.

[8] Franklin, Stan (1997) “Autonomous Agents as
Embodied AI,” Cybernetics and Systems' Special issue on
Epistemological Aspects of Embodied AI, 28:6 499-520.

[9] Franklin, Stan (2001) “Conscious Software: A
Computational View of Mind” in Soft Computing Agents:
New Trends for Designing Autonomous Systems, ed. V.
Loia, and S. Sessa. Berlin: Springer (Physica: Verlag).

[10] Franklin, S., B.J.Baars, U. Ramamurthy and M.
Ventura. (In review) The Role of Consciousness in
Memory.

[11] Franklin, Stan and Graesser, Art (1997) "Is it an
Agent, or just a Program?: A Taxonomy for Autonomous
Agents," Proceedings of the Agent Theories,
Architectures, and Languages Workshop, Berlin: Springer
Verlag, 193-206.

[12] Kanerva, P. (1988) “Sparse Distributed Memory,”
Cambridge MA: The MIT Press.

[13] Ramamurthy Uma, Sidney K. D’Mello and Stan
Franklin (2003) “Modeling Memory Systems with Global
Workspace Theory”, Seventh Conference of the
Association for the Scientific Study of Consciousness -
ASSC7, May 2003.

[14] Shastri, Lokendra (2002) Episodic memory and
cortico-hippocampal interactions, in TRENDS in
Cognitive Sciences, Vol. 6, No. 4, April 2002: 162-168.

Read-Cue = Roberto drives joyful * lively * Theater Friday
Target = Richard drives joyful * lively * Theater Friday

24.5 Richard dbives boyfel * nmvemy * Theater Drifai`
 2.0 Richard dbives joyfel * nmvem}` * Theater Drifai`
 1.0 Richard dbives boyfel * nmvgm}` * Theater Drifai`
 2.0 Richard dbives boyfel * lmvem}` * Theater Drifai`
 3.5 Richard dbives joyfel * nmvemy * Theater Drifai`
 3.5 Richard dbives joyfel * livemy * Theater Drifay`
 2.0 Richard dbives joyfel * livemy * Theater Friday
 3.0 Richard drives joyful * livemy * Theater Friday
 0.5 Richard drives joyful * lively * Theater Friday
 0.0 Richard drives joyful * lively * Theater Friday

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

