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Abstract 

This paper presents research on the development of effective 
forgetting mechanisms for the Sparse Distributed Memory 
(SDM) system, to computationally model Transient Episodic 
Memory (TEM), a short-term sensory perceptual episodic 
memory in software agents. Possible theories and mechanisms 
for forgetting are retrieval failures, decay and interference. 
The SDM architecture has inherent features to effect 
interference and retrieval failures. We have implemented two 
decay mechanisms in a variant of the SDM system.  In this 
paper, we present the decay mechanisms and the experimental 
results.  The results show that the decay mechanisms 
compliment the inherent features of the SDM architecture in 
realizing forgetting for TEM. 

Introduction 
It is well established that, in content-addressable, 

associative, episodic memories1, interference results when 
similar events over time become merged into a general 
event, blurring their details (Chandler, 1991; Lenhart & 
Freeman, 1995; Lindsay & Read, 1995). Thus, declarative 
memory (long-term memory for autobiographical events 
and semantic knowledge) cannot be counted on to help with 
the recall of where one parked one’s car in the parking 
garage this morning or what one had for lunch yesterday. 
These events are much too similar to a myriad of earlier 
such events. Yet such recall is essential for cognitive 
functioning. One needs to know where to find one’s car. 

In order to circumvent these functional difficulties 
associated with the retrieval of detailed information of 
recent events we hypothesize that humans have a content-
addressable, associative, transient episodic memory (TEM) 
with an information retention period measured in hours 
(Baars & Franklin, 2003; Franklin, Baars, Ramamurthy & 
Ventura, 2005). Humans are able to recall in great detail 
events of the immediate past – where they park their cars, 
whom they met that morning, what they discussed, what 
they had for meals, etc. The details of these events/episodes 
stay with us only for short durations – a few hours to a day. 
For different empirical reasons, Conway postulates a 
sensory-perceptual episodic memory (similar to TEM) with 
                                                           
1 In content addressable memories retrieval of a stored pattern is 
based on its degree of similarity to a retrieval cue, and not to an 
explicit address like a computer memory (RAM). An associative 
memory makes associations between related patterns, such that 
when one is encountered, the related patterns can be recalled. 
Episodic memories encode events with semantic, spatial, and 
temporal features, i.e., the what, the where, and the when. 

an information retention period measured in hours or 
perhaps a day, and with a sizable capacity (2001). Donald 
also assumes a similar TEM which he calls an intermediate-
term working memory (2001), while Panksepp speaks of a 
“transient memory store” (1998, page 129). Baddeley has 
proposed that working memory includes an episodic buffer 
that can hold episodic information for a short duration 
(2000). 

In order to achieve an acceptable degree of specificity as 
required by TEM, an effective mechanism for forgetting 
needs to be in place.  Two primary theories and possible 
mechanisms of forgetting are decay (Brown, 1958; 
Ebbinghaus, 1985/1964; Peterson & Peterson, 1959) and 
interference (Keppel & Underwood, 1962; McGeoch, 1932; 
Waugh & Norman, 1965). Interference influences forgetting 
because similar events encoded in a memory system 
interfere with one another and negatively affect retrieval. 
Alternately, decay brings about forgetting by causing a loss 
of memory traces attributed only to time. Retrieval failures 
have also been proposed as the possible basis for forgetting 
– memories never disappear; they just cannot be retrieved 
(Tulving, 1968). 

Our interest with human memory systems emerges from 
our desire to model several faculties of human (and animal) 
cognition by developing cognitive agents (software and 
robotic) capable of robust autonomy. The Intelligent 
Distribution Agent (IDA) is a cognitive software agent 
(Franklin, 1997; 2001) developed for the U.S. Navy. At the 
end of each sailor’s tour of duty, he or she is assigned to a 
new billet by a person called a detailer. IDA’s task is to 
facilitate this process by completely automating the role of a 
detailer. The design of the IDA technology and its more 
recent learning extension (LIDA) is motivated by a number 
of new AI techniques. The IDA architecture has a number of 
different memory systems, including sensory memory, 
perceptual associative memory, working memory, transient 
episodic memory, procedural memory, and declarative 
(autobiographical + semantic) memory.  

Transient episodic and declarative memories have 
distributed representations in IDA. There is evidence that 
this is also the case in animal nervous systems. The memory 
systems are computationally modeled by Sparse Distributed 
Memory (Kanerva, 1988).  This is reasonable due to several 
functional and neural similarities between SDM and human 
memory systems. The functional parallels include SDM's 
ability to account for classical memory phenomena such as 
knowing that one knows, the tip-of-the-tongue effect, 
rehearsal, momentary feelings of familiarity, and 
interference. The neural similarities between SDM and 
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human memory emerge from the likeness of the 
mathematical formulation of SDM to models of the 
cerebellar cortex developed by Marr (1969) and Albus 
(1971) (Kanerva, 1993).  

The focus of this paper is on the development of effective 
forgetting mechanisms for a variant of the SDM 
architecture, the modified SDM system (Ramamurthy, 
D’Mello, & Franklin, 2004), which shows promise to be a 
good candidate for use as a TEM in software agents such as 
IDA. 

Theoretical Background 

Sparse Distributed Memory 
SDM implements a content-addressable random access 

memory. Its address space is in the order of 2d (d is the 
dimensionality of the space and the size of the patterns). Of 
this space, you choose a manageable, uniform random 
sample, say m, of allowable locations. These are called hard 
locations. Thus the hard locations are sparse in this address 
space. Many hard locations participate in storing and 
retrieving of any datum, resulting in the distributed nature of 
this architecture. Hamming distance is used to measure the 
distance between any two points in this memory space.  

Each hard location is a bit vector of length d, storing data 
in d counters with a predefined limit. Each datum to be 
written to SDM is a bit vector of length d. Writing 1 to a 
counter results in incrementing the counter, while writing a 
0 decrements the counter. To write in this memory 
architecture, you select an access sphere centered at location 
X. To write a datum to X, you simply write to all the hard 
locations (typically 1% of m) within X’s access sphere. This 
results in distributed storage. This also naturally provides 
for memory rehearsal – a memory trace being rehearsed can 
be written many times and each time to about 0.01 times m 
locations. 

 Similar to writing, retrieving from SDM involves the 
same concept of access sphere – you read all the hard 
locations within the access sphere of location Y, pool the bit 
vectors read from all these hard locations and let each of the 
kth

 bits of those locations participate in a majority vote for 
the kth

 bit of Y. You reconstruct the memory trace in every 
retrieval operation.  Effectively, the read data at Y is an 
aggregate of all data that have been written to the hard 
locations within Y’s access sphere, but may not be any of 
them exactly. 

Furthermore, this memory can be cued with noisy 
versions of the original memory trace. To accomplish this, 
you employ iterated reading – first read at Y to obtain the 
bit vector, Y1. Next read at Y1 to obtain the bit vector Y2. 
Next read at Y2 to obtain the bit vector, Y3. If this sequence 
of reads converges to Y', then Y' is the result of iterated 
reading at Y. Please see Kanerva (1988) for details. 

The Modified SDM system 
A preliminary experimental evaluation of Kanerva’s 

original SDM for cognitive agents such as IDA, that encode 
text based episodic data, indicated the need for an 
architecture modification. Episodic data refers to patterns 

with features of the what, the where, and the when. When 
events are unfolding, the feature vector (the pattern written 
to memory) is not always complete. So, more often, the 
agent has to store partial feature sets. Similarly, when the 
agent cues its memory for retrieval, the retrieval cues are 
often partial feature-sets. SDM has no generic mechanism to 
handle partiality in the stored patterns as well as in the 
retrieval cues. It considers missing features to be random 
noise, thereby severely effecting performance. 

The modified SDM system (Ramamurthy, D’Mello, & 
Franklin, 2004) alleviates this problem of encoding and 
retrieval with partial patterns. The modification includes 
migrating to a ternary memory space while maintaining a 
binary address space for the hard locations. Adding “don’t 
cares” (*’s) to the 0’s and 1’s of the binary space yields a 
ternary memory space. This accommodates flexible cuing 
with fewer features than the actual memory trace where 
missing features are represented by “don’t cares” (*). 
Additionally, an adjustment was made to the Hamming 
distance calculations such that the distance between a “don’t 
care” (*) and a 0 or 1 was set to (0.5).  

 Detailed experimental simulations on the modified SDM 
system show a significant improvement in performance 
when compared to the original SDM system (D’Mello, 
Ramamurthy, & Franklin, 2005; Ramamurthy, D’Mello, & 
Franklin, 2004). The modified SDM system demonstrated 
more efficient distribution of the encoded patterns across the 
hard locations in the memory space. Its abilities in encoding 
partial patterns and retrieval with partial cues are also 
significantly better than the original SDM. Interestingly, a 
reasonable degree of “don’t cares” in the stored patterns 
improves performance as they act as attractor basins due to 
the modification to the Hamming distance calculation. 
Additionally, the modified SDM system also alleviates 
some of the problems related to text encoding (see below) 
by its improved retrieval quality when compared to the 
original SDM system. However, without appropriate 
forgetting mechanisms in place, we suspect that the 
modified SDM system will be unable to deliver the desired 
retrieval accuracies as required by TEM. 

Rationale for Decay in the Modified SDM system 
Historically decay and interference have been proposed as 

two theories of forgetting. It would clearly be beneficial if 
we could rely on interference as the exclusive mechanism of 
forgetting in TEM. Due to SDM’s massively distributed 
architecture, where each pattern is encoded to 
approximately one hundredth of the hard locations, 
forgetting due to interference is a bi-product of the system. 
However, while experimental simulations have verified the 
effect of interference in SDM, in certain situations, the 
degree to which encoded patterns interfere with each other 
can have adverse effects. 

A potential cause for undue information corruption due to 
undesirable interference effects emerges from SDM’s poor 
performance in encoding patterns consisting of non-random 
data. D’Mello, Ramamurthy, and Franklin have reported 
results of simulations where even when the memory was 
filled to capacity, with text-based episodic data, only 
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33.05% and 25.01% of the hard locations in the modified 
and original SDM respectively were involved in the 
encoding process (2005). This implies a clustering of the 
patterns in about a third of the memory space which would 
potentially cause undesirable interference effects. These 
results are consistent with the notion of SDM’s performance 
failures for handling non-random data (Hely, Willshaw & 
Hayes, 1997) and in some sense are a justification for a 
domain based initialization approach (Fan & Wang, 1997; 
Rao & Ballard, 1995) as opposed to the conventional 
random initialization utilized in these experiments. 

The undesirable interference effects caused by poor 
distribution of non-random data are amplified when text-
based information is encoded into SDM. Since SDM 
operates in a Boolean space, encoding text requires a binary 
representation of the characters. A simple way to enforce 
this mapping is by encoding the ASCII representation of 
characters. For example, the feature “dog”, would be 
represented as “01100100 01101111 01100111”. Since 
interference from related features effects the retrieved trace, 
error in recall is introduced. During the recall procedure, if 
the second bit of each character in the binary representation 
of dog is flipped, the resultant binary pattern is “00100100 
00101111 00100111”. Converting this recalled binary 
pattern into text would result in “$/'”, which at the character 
level bears absolutely no similarity to “dog.” This simple 
example shows that a 12.5% error in the retrieval process 
can completely distort the feature.  It should be noted that in 
some cases where one or two characters in a retrieved 
feature are corrupted, the correct feature (word) can be 
retrieved by the application of approximate string matching 
algorithms (Baeza-Yates & Navarro, 1999; Knuth, Morris, 
& Pratt, 1977) that are similar to spell checkers in 
commercial word processors. However, we refrain from 
using such methods, because the use of such techniques 
does not seem to be cognitively plausible. 

Although the modified SDM system does relax some of 
the adverse interference effects of the original SDM system, 
it does not solve the problems to an acceptable degree. 
Therefore, we propose the use of decay to compensate for 
some of the interference related problems in SDM. This 
approach has been considered plausible in explaining decay 
in short-term memory systems (Rettman, 1971). More 
recently Altmann and Gray have proposed a theory that 
functionally relates decay and interference (2002). The 
fundamental premise of their theory is rooted in the fact that 
if a memory trace decays, it causes lower interference with 
future memory traces. It should be noted that the notion of 
decay in both short-term and long-term memories is a matter 
of intense debate. While we use decay to alleviate specific 
computational problems with the modified SDM as a model 
of TEM, we refrain from making any controversial 
statements regarding the influence of decay in human 
memory. 

Decay Mechanisms for the Modified SDM System 
There is a direct relationship between the values in the 

counters of the hard locations and the memory traces stored 
in the modified SDM. The strength of the memory traces is 

directly proportional to the number of times the memory 
traces have been rehearsed. To affect decay of stored 
memory traces in the modified SDM, the contents of the 
counters in each of the hard locations were decremented on 
the basis of the decay function employed. Mathematical 
formulations of two plausible decay mechanisms, an 
exponential decay function, and a negated-translated 
sigmoid function, are presented in Table 1.  
 
Table 1: Mathematical Formulation of Decay Mechanisms 
 

Decay Mechanism Mathematical Function 
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In the exponential decay function (Figure 1), the decay 

rate (f) approaches zero exponentially as the counter values 
(x) increase, without ever reaching zero. For low values of 
the counters, the decay rate is high and the decay rate 
approaches zero as the counter values increase. The decay 
rate drops sharply with this function. Figure 1 shows a set of 
exponential decay curves for different values of the 
parameter ‘a’. 

 

 
Figure 1:  Exponential Decay Curves 

 
The negated-translated sigmoid decay function shown in 

Figure 2 is, in principle, similar to the exponential decay 
function with respect to the change in decay rate. The decay 
rate approaches zero asymptotically as x increases, without 
ever reaching zero. The function is obtained by first 
negating the classic sigmoid function and then translating 
the negated function by positive 1. In contrast to the 
exponential decay function, this decay function has a 
smoother drop in the initial high decay rate. For higher 
values of the counters, the decay rate is closer to zero, while 
for low values of the counters, the decay rate is high.  
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Figure 2:  Negated-Translated Sigmoid Decay Curve 

Experimental Simulations 
The modified SDM with these two decay mechanisms 

was tested with several types of memory traces. All the tests 
were aimed at determining the ability of TEM with decay to 
forget less rehearsed (written) memory traces, while 
preserving traces that were sufficiently reinforced. It is 
hypothesized that retained episodes are consolidated to the 
declarative memory (DM) at a later point in time. A 
predicted side effect of the forgetting process would be 
reduced interference among the encoded memory traces. 

Qualitative Review of Decay 
The purpose of simulations presented here was to 

qualitatively assess the performance of the two decay 
mechanisms. All memory traces were formulated on the 
basis of the case-grammar template illustrated in Figure 3. 
Each episodic set consisted of six related episodes (high 
inter association) sharing the same agent and recipient, with 
varying spatial and temporal features. 

The first set of tests (Test-A) used fully specified memory 
traces (no missing features) while the second set (Test-B) 
used partial read cues for retrieval.  Of the 6 related events 
in each set of episodes, one event in each set was written a 
large number of times (well rehearsed) while the other 5 
events in each set were encoded with smaller, varying 
strengths (rehearsed less). The effect of decay was observed 
by conducting several memory retrieval operations over 
multiple decay cycles.  

For the exponential decay, the system was tested for 
several values of parameter ‘a’, ranging from 3 to 9. With 
the negated-translated sigmoid decay, the system was tested 
for three values of ‘a’, namely, 2, 3 and 4 and value of ‘c’ 
was set at 3. For values of ‘a’ greater than 4 in the negated-
translated sigmoid decay, the initial high decay rate drops 
almost in the same fashion as the exponential decay. 

The testing of the two decay mechanisms was evaluated 
on the basis of the number of cycles taken for the most 
rehearsed/written memory trace(s) to decay away and hence 
the system’s inability to retrieve those memory traces or 
forget the memory traces. We also considered the total 
number of cycles required for all the memory traces to 
decay. 

TEMPLATE:  
“Agent | Verb | Recipient-Adjective | Recipient | 
Object-Adjective | Object | Place | Time” 
 
EXAMPLES: 
Test-A: 
      (1)      “Richard | drives | joyful | Vanessa |  
                   lively | comedy | Theatre | Friday” 
      (2)      “Michael | answers | cousin | Nathan | 
                   nervous | queries | eatery | Tuesday” 
Test-B: 
      (1)      “Richard | drives | * | * | 
                   lively | comedy | * | Friday”  
      (2)      “ * | answers | * | Nathan | 
                    * | queries | * | Tuesday” 

 
Figure 3: Case-grammar template with example episodes 

 
The results indicate that the “don’t cares” in the content 

space of the modified SDM were not a predictive factor in 
the decay process.  Irrespective of partial writes and partial 
read cues, the decay mechanisms exhibited similar 
performance properties. With the decay mechanism enabled, 
the modified SDM maintained the properties of retrievals 
with partial cues as well as binding-error detection (not 
explained here). We also noticed the effects of interference. 
Interference was observed to be significantly higher with 
decay of episodes that were written (rehearsed) fewer times 
and related episodes which were written (rehearsed) more 
were retrieved when cued for the episodes that were written 
(rehearsed) fewer times.  We now briefly review the effect 
of decay attributed to our two decay functions. 

Exponential Decay 
The fact that episodes encoded with minimal 

reinforcement decayed in the 1st and 2nd decay cycles was 
ubiquitous in all tests. As expected, the rate of decay was 
inversely related to the level of reinforcement. Interference 
effects caused by reinforcement were reduced when the 
episodes that were not sufficiently reinforced decayed. The 
parameter ‘a’ of the exponential decay function controlled 
the duration by which memory traces stayed in the system to 
be retrieved at some later time. The number of decay cycles 
by which all the memory traces decayed fully increased as 
the value of ‘a’ increased. This is a parameter which may be 
domain dependent, and has to be selected by trial based on 
the domain and the number of dimensions to be used in the 
given SDM architecture. 

Figures 4 and 5 illustrate the effect of the exponential 
decay function. In particular we are interested in retrieving 
events from a related episode set involving two actors, 
Richard and Vanessa. In figure 4, the memory is at its fourth 
decay cycle and is able to retrieve the last four of the 
patterns, with considerable difficulty in retrieving the third 
and fifth patterns. However, four cycles later (Figure 5, 
decay cycle 8), the memory system is only able to recall the 
last pattern. This is because this pattern was well rehearsed 
(repeatedly encoded) when compared to the other five 
patterns. 
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Negated-Translated Sigmoid Decay 
The results of testing the modified SDM with negated-

translated sigmoid decay function were similar to what we 
observed with the exponential decay. The main difference 
was that only episodes with significant reinforcement were 
retrievable after several decay cycles, while all other 
episodes decayed at a higher rate.  

Figure 4: Retrievals with exponential decay after decay 
cycle 4 

 
Since the decay rate is higher for hard locations filled to 

about 80% of their capacity (based on the parameterization 
of the function), we observed that episodes written to the 
memory fewer times were not retrievable after the first or 
second decay cycle, depending on the values of the 
parameter ‘a’. Episodes that were sufficiently reinforced 
were preserved and were retrievable even after a 
considerable number of decay cycles.  

The test-results indicate that the negated-translated 
sigmoid decay function filters memory traces at a higher 
level for consolidation to declarative memory. Episodes 
which were written very few to fewer times decayed away 
quickly due to the high initial decay rate and did not skew 
the retrieval of episodes which were rehearsed (written) the 
most. Unique episodes are rehearsed many times, hence 
written many times to memory.  This decay mechanism 
shows promise in modeling transient episodic memory 
where only episodes which are well rehearsed are retained 
and hence will be available for consolidation. 

Figure 5: Retrievals with exponential decay after decay 
cycle 8 

Comparison of the decay functions 
We used three distinct sets of 6 associated episodes in 

each set, writing the memory traces with varying degrees of 
rehearsal. Decay was caused by the exponential and the 
negated-translated sigmoid decay functions. As a control, a 
constant decay function was also introduced. This function 
essentially decays the counters of each hard location by a 
constant (0.5 for the simulations). One memory trace in each 
of the 3 sets was written 120, 100 and 95 times respectively, 
to simulate the encoding of an episode with a significant 
degree of rehearsal.  This was essential for capturing the 
properties of the negated-translated sigmoid decay function 
because traces encoded with limited rehearsal would decay 
away within a decay cycle or two. 

 
Figure 6: Comparison of the effect of decay mechanisms 
 
The read-cues used for retrieval were partial read-cues 

with 1 missing feature. For each of the decay functions, the 
total number of retrieved episodes was computed for a 
system-run without decay and for 15 consecutive decay 

READING : CYCLE 4

READ-LOG-EVENT
Cue:    Richard drives * Vanessa lively * Theater Friday
Status: false

READ-LOG-EVENT
Cue:    Vanessa gifted excited * wrapped present Theater *
Status: false

READ-LOG-EVENT
Cue:    * thanks sister Vanessa * wishes Theater evening
Status: true
Output: Richard enjoys  sister  Vanessa amusing onstage Theater evening
0   80.5    80.5 Richard enjoqs sistev Vanessa amusmne oosdage Tieater evening
1     8.5    80.0   Richard enjoys  sister  Vanessa amusing onstage Theater evening
2     0.0    80.0   Richard enjoys  sister  Vanessa amusing onstage Theater evening

READ-LOG-EVENT
Cue:    Richard enjoys sister Vanessa * onstage Theater *
Status: true
Output: Richard enjoys  sister  Vanessa amusing onstage Theater evening
0   56.0    56.0 Richard enjoys  sister  Vanessa amusing onstage Theater evening
1     0.0    56.0   Richard enjoys  sister  Vanessa amusing onstage Theater evening

READ-LOG-EVENT
Cue:    * shopped amused * modern necktie gallery evening
Status: true
Output: Vanessa selects sibling Richard unusual necktie gallery evening
0   79.0    79.0 Richard slnepe` ciqtmd Vafhcra eoecufd necktie gallery evening
1   20.5    92.5    Vichcra slnequs sicdmf Rafhcra uousucd necktie gallery evening
2   18.0   100.5   Vaoacsa smnects sibdin Righar` uousuad necktie gallery evening
3   13.5   111.0   Vanessa selects sibling Richard unusual necktie gallery evening
4     0.0   111.0   Vanessa selects sibling Richard unusual necktie gallery evening

READ-LOG-EVENT
Cue:    Vanessa selects * Richard unusual * gallery evening
Status: true
Output: Vanessa selects sibling Richard unusual necktie gallery evening
0   56.0    56.0 Vanessa selects sibling Richard unusual necktie gallery evening
1     0.0    56.0   Vanessa selects sibling Richard unusual necktie gallery evening

READING : CYCLE 8

READ-LOG-EVENT
Cue:    Richard drives * Vanessa lively * Theater Friday
Status: false

READ-LOG-EVENT
Cue:    Vanessa gifted excited * wrapped present Theater *
Status: false

READ-LOG-EVENT
Cue:    * thanks sister Vanessa * wishes Theater evening
Status: false

READ-LOG-EVENT
Cue:    Richard enjoys sister Vanessa * onstage Theater *
Status: false

READ-LOG-EVENT
Cue:    * shopped amused * modern necktie gallery evening
Status: false

READ-LOG-EVENT
Cue:    Vanessa selects * Richard unusual * gallery evening
Status: true
Output: Vanessa selects sibling Richard unusual necktie gallery evening
0    56.0 56.0 Vanessa selects sibling Richard unusual necktie gallery evening
1      0.0 56.0     Vanessa selects sibling Richard unusual necktie gallery evening
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cycles. A graphical depiction of effect of the two decay 
mechanisms is presented in Figure 6. 

The exponential decay mechanism performs quite well 
but has a rapid drop in the decay rate. The negated-
translated sigmoid decay shows a rapid decay of the less 
rehearsed episodes while episodes which were well 
rehearsed decayed extremely slowly. These well rehearsed 
episodes were retrievable after several decay cycles while 
others were forgotten after the first couple of decay cycles. 
This high grade filtering ensures that only relevant, 
important, unique, urgent and emotionally charged episodes 
are retained in transient episodic memory. 

Conclusions 
We have presented two possible decay mechanisms for 

the modified SDM system.  Our simulations reveal that the 
negated-translated sigmoid function seems to be a more 
attractive model than the exponential decay function. The 
decay mechanisms for the modified SDM work in 
conjunction with interference as an effective forgetting 
mechanism.  
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