
Self-Preservation Mechanisms
for

Cognitive Software Agents

Uma Ramamurthy and Stan Franklin
Computer Science Division and Institute for Intelligent Systems

The University of Memphis, Memphis, TN 38152, U.S.A.
urmmrthy@memphis.edu and franklin@memphis.edu

Abstract-Humans and other animals have a sense of self-

preservation that motivates them to take appropriate actions to
preserve themselves. Intelligent software systems must have
built-in or learnt functionality to detect emergencies in their
domains, and must be able to act appropriately to save their
state and data, and shutdown cleanly if necessary. They must
also be able to restart and restore themselves to their most
recent state once their computing environment comes back
online. We have designed such mechanisms for an Intelligent
Distribution Agent (IDA) built for the U.S. Navy. IDA
implements Baars’ Global Workspace Theory of consciousness.
As a result, she can react to novel and problematic situations in
a more flexible, more human-like way than traditional AI
systems. We hypothesize that software agents like IDA must
have self-preservation mechanisms to adapt and survive in their
domains. This paper presents a design for self-preservation
mechanisms consistent with IDA’s cognitive cycle which can be
implemented in intelligent software systems.

I. INTRODUCTION
Software agents ‘live’ in computing systems and

networks. They interact with their domains via messaging
systems like email and chat-modes. When the computing
environment in which they reside is about to crash, the agent
must be able to detect such an emergency, save its data and
state, and shutdown in a clean manner, if necessary. If the
software agent runs out of memory, disk and/or processing
resources, it must be able to negotiate with the system
administrator to gain access to additional resources, or it
must save its state and data before shutting down in a safe
manner. Further, when the computing environment comes
online again, the agent must read its saved state and data, and
come ‘alive’ to function once again in a safe environment.
All this requires a sense of self-preservation for software
agents. Humans and other animals have such a sense of self-
preservation. Building a sense of self-preservation into
software agents will enable them to save their states,
shutdown in emergencies and come ‘alive’ into their saved
state when the computing system comes online once again.
In this work, we detail designs for self-preservation in a
software agent called IDA.

II. GLOBAL WORKSPACE THEORY AND “CONSCIOUS”
SOFTWARE AGENTS

An autonomous agent is a system situated in, and part of
an environment. It senses that environment, and acts on it,
over time, in pursuit of its own agenda. It acts in such a way
as to possibly influence what it senses in the future [8]. In
that sense, the agent is structurally coupled to its
environment [16], [17]. Biological examples of autonomous
agents include humans and most other animals. Non-
biological examples include some mobile robots, and various
computational agents, including artificial life agents,
software agents and computer viruses. This research is
concerned with autonomous software agents ‘living’ in real
world computing systems.

Autonomous software agents, when equipped with
cognitive features chosen from among multiple senses,
perception, working memory, transient episodic memory,
declarative memory, attention, planning, reasoning, problem
solving, learning, emotions, moods, attitudes, multiple
drives, etc., are called cognitive agents [7]. Such agents
promise to be more flexible, more adaptive, more human-like
than typical currently existing software because of their
ability to learn, and to deal with novel input and unexpected
situations.

One way to design such cognitive agents is to model
them after humans. We have designed and implemented
such cognitive agents within the constraints of the Global
Workspace Theory of consciousness, a psychological theory
that gives a high-level, abstract account of human
consciousness and broadly sketches its architecture [3], [4].
We call agents that are so designed “conscious” software
agents.

Global Workspace Theory postulates that human
cognition is implemented by a multitude of relatively small,
special purpose processors, almost always unconscious.
Coalitions of such processors find their way into a global
workspace and hence into consciousness. This limited
capacity workspace serves to broadcast the message of the
coalition to all the unconscious processors, in order to recruit
other processors to join in handling the current novel
situation or problematic situation. All this takes place under

the auspices of contexts: goal contexts, perceptual contexts,
conceptual contexts, and/or cultural contexts. Each context is
itself, a coalition of processors. “Conscious” software agents
should implement the major parts of Global Workspace
Theory, and remain within its constraints. IDA is one such
“conscious” software agent.

III. IDA AND HER ARCHITECTURE

IDA (Intelligent Distribution Agent) is a “conscious”
software agent developed for the U.S. Navy. At the end of
each sailor’s tour of duty, he or she is assigned to a new
billet. This assignment process is called distribution. The
Navy employs some 300 people, called detailers, full time, to
effect these new assignments. IDA’s task is to fully automate
this process, by playing the role of a human detailer.

IDA deals with both communication problems and
constraint satisfaction problems. She communicates with
sailors via email in natural language, understanding the
content. She accesses a number of existing Navy databases,
again understanding the content. She ensures that the Navy’s
needs are satisfied, for example, that there is the required
number of sonar technicians on a destroyer with the required
types of training. She holds down moving costs. And, she
caters to the needs and desires of the sailor, as well as is
possible. Keeping in focus the sailor’s preferences and the
Navy’s needs, she looks up the Navy’s database of available
postings and generates a short list of jobs that are appropriate
to offer to the sailor. In that process, she performs constraint
satisfaction and deliberates over the various jobs that are
available. Once the list of jobs is generated, she negotiates
with the sailor to assist him in selecting his next job posting,
and ensures that he has the required training he needs for that
posting.

IDA is also intended to model a broad range of human
cognitive functions. Her architecture is comprised of a
number of different, but tightly integrated, modules each
devoted to particular cognitive processes as shown in Fig. 1
below. Detailed descriptions of these modules comprising
IDA’s architecture are available in published papers [9],
[10]. Here, we briefly describe some of the modules that
directly relate to her self-preservation mechanisms and
IDA’s cognitive cycle, while providing references to more
detailed descriptions.

A. IDA’s Perception
Her perception module [24] is based on the Copycat

architecture [11], [12]. IDA senses her world using three
different sensory modalities: She receives email messages in
natural language, she queries and reads database query-
outputs and, lastly, she senses via operating system
commands and messages.

In sufficiently narrow domains, natural language
understanding is possible with an analysis of surface features
without the use of a symbolic parser [13]. Allen describes
this approach to natural language understanding as complex,
template-based matching [1]. IDA’s relatively limited
domain requires her to deal only with a finite number of

distinct message types, each with relatively predictable
content. This allows for surface level natural language
processing. Her perception module has been implemented as
a Copycat-like architecture [12] with perceptual codelets that
are triggered by surface features of her textual input. The
module includes an input-workplace where the incoming
stimulus is placed, a Slipnet that stores domain knowledge
(providing perceptual contexts from Global Workspace
Theory), a pool of perceptual codelets (processors from
Global Workspace Theory) specialized for recognizing
particular pieces of text, and production templates for
building and verifying understanding. Together they
constitute an integrated perceptual system for IDA, allowing
her to recognize, categorize and understand. Using this
perception module, IDA must also perceive the query-
outputs read from databases as well as operating system
messages. These latter two types of percepts of hers are
much easier to process as they are better formatted than the
natural language of the email messages.

B. IDA’s Memory Systems
The IDA model has a number of different memory

systems, including working memory, transient episodic
memory and auto-biographical/declarative memory. Some of
these memories are motivated by Sparse Distributed Memory
system [14].

When IDA receives a message from a sailor saying that
his projected rotation date is approaching and asking that a
job be found for him, the perception module recognizes the
sailor’s name and social security number (SSN), and that the
message is of the ‘please-find-job’ type. This information is
then written to the workspace (working memory).

IDA employs a modified sparse distributed memory
(SDM) [2], [21] for her major associative memories –
transient episodic memory (TEM) and declarative memory
(DM). SDM is a content addressable memory that, in many
ways, is an ideal computational mechanism for use as a long-
term associative memory. Any item written to the workspace
cues a retrieval from both the TEM and DM, returning prior
activity associated with the current entry. TEM and DM will
be accessed as soon as the message information reaches the
workspace, and the retrieved local-associations will be also
written to the workspace.

At any given moment, IDA’s workspace may contain,
ready for use, a current entry from perception, prior entries in
various states of decay, and local-associations instigated by
the current or prior entries, i.e. activated elements of TEM
and DM. IDA’s workspace thus consists of both short-term
working memory and something very similar to the long-
term working memory of Ericsson and Kintsch [6].

C. IDA’s “Consciousness” module
The apparatus for “consciousness” in IDA consists of a

coalition manager, a spotlight controller, a broadcast
manager, and a collection of attention codelets who
recognize novel or problematic situations [5]. Attention
codelets keep a watchful eye out for some particular situation
to occur that requires “conscious” intervention.

Fig. 1. IDA’s Architecture

In most cases an attention codelet is watching the

workspace, which will likely contain both external
perceptual information and data created internally, including
the local-associations. Upon encountering such a situation,
the appropriate attention codelet will be associated with the
small number of information codelets that carry the
information describing the situation. This association should
lead to the collection of this small number of codelets,
together with the attention codelet that collected them,
becoming a coalition. Codelets also have activations. The
attention codelet increases its activation in order that the
coalition, if one is formed, might compete for the spotlight
of “consciousness”. Upon winning the competition, the
contents of the coalition are then broadcast to all codelets
(Global Workspace Theory processors), the process of
recruiting resources to solve the current problem.

For example, when an attention codelet sees the
‘please-find-job’ message type in the workspace, it gathers
information codelets carrying the sailor’s name, SSN,
message type, etc., and forms into a coalition, which
competes for “consciousness”. If or when successful, its
contents will be broadcast to all codelets.

D. IDA’s Behavior Net
IDA selects her actions by means of an enhanced

version of the behavior net [15]. This behavior net provides

for high-level action selection in the service of built-in
drives [19], that is, primitive motivators. She has several
distinct drives operating in parallel. These drives vary in
urgency as time passes and the environment changes.
Behaviors are typically mid-level actions, many depending
on several behavior codelets for their execution.

A behavior net is composed of behaviors,
corresponding to goal contexts in Global Workspace
Theory, and their various links. A behavior looks very much
like a production rule, having preconditions as well as
additions and deletions. It is typically at a high level of
abstraction often requiring the efforts of several codelets to
effect its action. Each behavior occupies a node in a
digraph. The three types of links -- successor, predecessor
and conflictor -- of the digraph are completely determined
by the behaviors. Collections of related behaviors, together
with their links, form behavior streams (goal context
hierarchies in Global Workspace Theory). The behavior net
is best thought of as a collection of instantiated behavior
streams each connected to at least one drive.

As in connectionist models [18], this digraph spreads
activation. The activation comes from that stored in the
behaviors themselves, from the environment, from drives,
and from internal states. The more relevant a behavior is to
the current situation, the more activation it is going to
receive from the environment. Each drive awards activation

to those behaviors that will satisfy it. Certain internal states
of the agent can also send activation to the behavior net.
One such example is activation from a behavior codelet
responding to a “conscious” broadcast. Activation spreads
from behavior to behavior along both excitatory and
inhibitory links, and a behavior is chosen to execute based
on activation and the satisfaction of its preconditions. Her
behavior net produces flexible, tunable action selection for
IDA. As is widely recognized in humans, the hierarchy of
goal contexts is fueled at the top by drives, that is, by
primitive motivators, and at the bottom by input from the
environment, both external and internal.

When a “conscious” broadcast for a ‘please-find-job’
message is received by appropriate behavior-priming
codelets, they instantiate a behavior stream in the behavior
net for reading the sailor’s personnel records. They also
bind appropriate variables with sailor’s name and SSN, and
send activation to a behavior that knows how to initiate the
access to the Navy personnel database. If or when that
behavior is executed, behavior codelets associated with it
begin to read data from the sailor’s records. This data is
written to the workspace. Each such write results in another
round of local-associations from TEM and DM, the
triggering of attention codelets, the resulting information
coming to “consciousness,” additional binding of variables
and passing of activation, and the execution of the next
behavior. As long as it is the most important activity going
on, this process is continued until all the relevant personnel
data are written to the workspace. In a similar fashion,
repeated runs through “consciousness” and the behavior net
result in a coarse selection of possibly suitable jobs being
made from the job requisition database.
E. IDA’s Cognitive Cycle

IDA functions by means of flexible, serial but
cascading cycles of activity that we refer to as cognitive
cycles. We will next explore the cognitive cycle in detail (as
shown in Fig.2) in order to facilitate the reader’s
understanding of the material on self-preservation in Section
V.

1. Perception. Sensory stimuli, external or internal, are

received and interpreted by perception creating
meaning. Note that this stage is unconscious.

a. Early perception: Input arrives through

senses. Specialized perception codelets
descend on the input. Those that find features
relevant to their specialty activate appropriate
nodes in IDA’s slipnet (a semantic net with
activation).

b. Chunk perception: Activation passes from

node to node in the slipnet. The slipnet
stabilizes bringing about the convergence of
streams from different senses and chunking
bits of meaning into larger chunks. These

larger chunks, represented by meaning nodes
in the slipnet, constitute the percept.

2. Percept to Preconscious Buffer. The percept,

including some of the data plus the meaning, is stored
in preconscious buffers of IDA’s working memory.

3. Local Associations. Using the incoming percept and

the residual contents of the preconscious buffers as
cues, local associations are automatically retrieved from
transient episodic memory and from declarative
memory. The contents of the preconscious buffers
along with the retrieved local associations from
transient episodic memory and declarative memory
together constitute long-term working memory [6].

4. Competition for “consciousness”. Attention codelets,

whose job it is to bring relevant, urgent, or insistent
events to “consciousness”, view long-term working
memory. Some of them gather information, form
coalitions and actively compete for access to
“consciousness”. The competition may also include
attention codelets from a recent previous cycle.

The activation of unsuccessful attention codelets
decays, making it more difficult for them to compete
with newer arrivals. However, the contents of
unsuccessful coalitions remain in the preconscious
buffer and can serve to prime ambiguous future
incoming percepts. The same is true of contents of
long-term working memory that aren’t picked up by
any attention codelet.

5. “Conscious” Broadcast. A coalition of codelets,

typically an attention codelet and its covey of related
information codelets carrying content, gains access to
the global workspace and has its contents broadcast.
The current contents of “consciousness” are also stored
in transient episodic memory. At recurring times not
part of a cognitive cycle, the contents of transient
episodic memory are consolidated into long-term
associative memory.

6. Recruitment of Resources. Relevant behavior codelets

respond to the “conscious” broadcast. These are
typically codelets whose variables can be bound from
information in the “conscious” broadcast. If the
successful attention codelet was an expectation codelet
calling attention to an unexpected result from a
previous action, the responding codelets may be those
that can help to rectify the unexpected situation. Thus
“consciousness” solves the relevancy problem in
recruiting resources.

Fig. 2. IDA’s Cognitive Cycle

7. Setting Goal Context Hierarchy. Some responding

behavior codelets instantiate an appropriate behavior
stream, if a suitable one is not already in place. They
also bind variables, and send activation to behaviors.
Here we assume that there is such a behavior codelet
and behavior stream. If not, then non-routine problem
solving using additional mechanisms is called for.

8. Action Chosen. The behavior net chooses a single

behavior (goal context) and executes it. This choice
may come from the just instantiated behavior stream or
from a previously active stream. The choice is affected
by internal motivation (activation from drives), by the
current situation, external and internal conditions, by
the relationship between the behaviors, and by the
activation values of various behaviors.

9. Action Taken. The execution of a behavior (goal

context) results in the behavior codelets performing
their specialized tasks, which may have external or
internal consequences. This is IDA taking an action.
The acting codelets also include an expectation codelet
(see Step 6) whose task it is to monitor the action, and
to try and bring to “consciousness” any failure in the
expected results.

IV. NEED FOR SELF-PRESERVATION IN SOFTWARE AGENTS

The need for the kind of self-awareness required for

self-preservation is beginning to be recognized by artificial
intelligence researchers. DARPA (the Defense Advanced
Research Projects Agency) is currently funding research on
Cognitive Information Processing Technology
(http://www.darpa.mil/baa/baa02-21.htm). The BAA (Broad
Agency Announcement) says that “Cognitive systems have
a number of differentiating characteristics, but in short, they
can be characterized as systems that know what they are
doing. … And, notably, they will be robust in the face of
surprises provided by the environment; the avoidance of the
"brittleness" of the expert systems of the past will be a
distinguishing feature.”

IBM motivates its notion of autonomic computing by
noting that “a shortage of skilled administrators combined
with the complexity of information processing technology
infrastructure prevents us from taking full advantage of its
potential.” They offer as a solution “autonomic computing:
a systemic view modeled after a self-regulating biological
system.” They go on to assert that “A virtual world is no
less dangerous than the physical one, so an
autonomic computing system must be an expert in
self-protection. It must detect, identify and protect itself

against various types of attacks to maintain overall
system security and integrity.”
(http://www.research.ibm.com/autonomic/)

Aaron Sloman speaks of the need for “… a fast global
alarm system to take control where rapid action is urgently
required …” He builds such alarms into his CogAff meta-
architecture for decision making agents [23]. The kind of
self-preservation we are proposing here would seem to be a
part of both cognitive computing and autonomic computing,
as well as implementing Sloman’s global alarms.

Computing systems in general, and software systems
and software agents in particular must have system integrity
and robustness. Systems that ‘live’ in computing systems
and networks, and that interact with their environment via
messaging systems, must have the capability to remember,
recall and learn to adapt to their dynamic environments.
This requires that the system have mechanisms to monitor
itself and its environment, detect emergencies and act
proactively to preserve its state and data. Such actions will
enable the system to maintain its integrity and be robust by
being able to shutdown in a safe manner during emergencies
and restart itself with very little loss of data, if any.

Self-preservation mechanisms are essential for complex
systems. Their complex domains, multiple modules and
multitude of data structures make it a software engineering
requirement that such complex systems have the ability to
preserve themselves. Cognitive software agents, being
complex systems, are specifically well-suited for having
self-preservation mechanisms built into them.

V. SELF-PRESERVATION MECHANISMS IN IDA

IDA was designed and built as a proof of concept for

Global Workspace Theory. She is designed to model many
facets of human cognition. The mechanisms already built
into her system make it possible to easily integrate the self-
preservation mechanisms into her architecture. These
mechanisms operate within IDA’s continuing cognitive
cycles. In this section, we describe the design details of
IDA’s self-preservation mechanisms. Each of these self-
preservation mechanisms in IDA spans multiple and often
overlapping cognitive cycles (detailed in Section III.E).

A. Saving data structures regularly
IDA’s architecture has several data structures whose

contents and current state are crucial for her functioning.
The IDA model depends on its usual action selection
mechanism involving its “consciousness” module and its
behavior net to save these data structures on a regular,
periodic basis to the hard-disk. Such saving ensures that the
system’s state is backed up to disk in case of any crash or
emergency shutdown of the host system.

This backup mechanism begins with a backup attention
codelet that gains activation as time passes from the last
backup. This attention codelet competes to bring to
“consciousness” the need to backup (step 4 of the cognitive
cycle). When it eventually succeeds, perhaps in a

subsequent cycle, a “conscious” broadcast occurs in step 5
of the cognitive cycle. The broadcast recruits behavior
codelets in priming mode that instantiate a backup behavior
stream whose individual behaviors are capable of the
various parts of the backup (steps 6 and 7 of the cognitive
cycle). This stream is attached to and receives activation
from a backup motivator drive. The activation provided by
the backup drive increases as time passes since the last
backup. Each behavior in this stream competes for
execution and, upon winning (step 8 of the cognitive cycle),
executes its portion of the backup by releasing its backup
behavior codelets in step 9 of the then current cognitive
cycle.

The crucial data structures of IDA at any point in time
are the input-workplace of her perception module, her
workspace (working memory), her Transient Episodic
Memory (TEM), her Declarative Memory (DM) and her
behavior net. The backup behavior codelets save to the disk
only the changes and additions since the previous save of
the TEM and DM. This requires that the data items in TEM
and DM have archive-bits in them. Every save of the
contents of these two memories sets the archive-bits of their
data items, thus enabling incremental-saving process for
these two memory systems.

Though the backup process is initiated by a “conscious”
process, it occurs so frequently that much of it becomes
automatized over time, and occurs unconsciously [20].This
backup is part of the self-monitoring process of the agent.
The process ensures that IDA’s latest state, or something
close to it is always available on the disk, and in case of a
power failure, the agent can come ‘alive’ again and restore
herself to her last saved state. Thus, the agent’s survival is
ensured with minimal loss of information.

B. Negotiate for system resources
Amongst her self-preservation mechanisms is one

whose job it is to monitor the host system that IDA ‘lives’
in. The codelets in this mechanism watch the host system’s
memory allocation and available memory; they watch the
host system’s disk space allocations and available disk
space; and they watch the CPU load on the host system.

The starting point of this monitoring mechanism is a
monitoring attention codelet whose activation increases
with time past the last monitoring. In step 4 of the cognitive
cycle, this monitoring attention codelet competes to bring to
“consciousness” the need to monitor. When it eventually
succeeds, the resulting “conscious” broadcast recruits
behavior codelets in priming mode in steps 5 and 6 of the
cognitive cycle. These codelets instantiate a monitoring
behavior stream (step 7 of the cognitive cycle) whose
individual behaviors are capable of the various functions of
monitoring. This stream is attached to and receives
activation from a monitoring drive. The activation provided
by the monitoring drive increases as time passes since the
last backup. Each behavior in this stream competes for
execution and, upon winning (step 8 of the cognitive cycle),
executes its portion of the monitoring by releasing its

monitoring behavior codelets in step 9 of the cognitive
cycle.

These codelets execute the appropriate operating
system commands to monitor and determine the status of
the system resources. IDA’s perception module has the
built-in domain knowledge to understand the output of the
operating system in response to those commands (step 1 of
the cognitive cycle). In step 2 of the cognitive cycle, these
understood percepts are written to the preconscious buffer
of the agent’s working memory. The working memory is
watched by monitoring expectation codelets (specialized
attention codelets) that were released by the monitoring
behaviors.

When these monitoring expectation codelets sense
through these system responses that the memory and disk-
space availability is low and the agent may not be able to
have the required resources to do her job, they compete to
bring knowledge of this situation to “consciousness” (step 4
of the cognitive cycle). Under such conditions the coalitions
formed by such monitoring expectation codelets would have
high activation and would be expected to win the
competition. When one wins, the resulting “conscious”
broadcast recruits behavior codelets in priming mode (steps
5 and 6 of the cognitive cycle). These codelets instantiate a
negotiating behavior stream whose individual behaviors are
capable of carrying on an email correspondence with the
system administrator via the agent’s perception module.
This stream is attached to and receives activation from
IDA’s self-preservation drive which always provides high
activation (during step 8 of the cognitive cycle).

Through the behaviors in this negotiating behavior
stream, IDA sends an email to the system administrator
warning him/her about the low resource availability and,
perhaps with subsequent emails, negotiates with him/her
proactively to have the required resources made available
(step 9 of the cognitive cycle). This process of negotiation
with the system administrator may continue through several
email messages, spanning multiple cognitive cycles.

IDA has built-in capabilities for communicating with
sailors by email in natural language. These capabilities are
extended to include negotiation with the system
administrator in the interest of self-preservation.

C. Handling scheduled host system shutdown
When IDA receives scheduled system shutdown email

messages from the system administrator, her perception
module understands these messages in step 1 of the
cognitive cycle. When such messages are perceived and
written to IDA’s workspace in step 2 of the cognitive cycle,
a self-preservation attention codelet detects them, forms a
coalition with information codelets, and competes for
“consciousness” in step 4 of the cognitive cycle. Eventually
the day and time when the system shutdown is scheduled
come to “consciousness” by virtue of a “conscious”
broadcast occurring in step 5 of the cognitive cycle.
Behavior codelets in priming mode respond to the
“conscious” broadcast and instantiate a behavior stream to

deal with the scheduled shutdown (steps 6, 7 and 8 of the
cognitive cycle).

In step 9 of the cognitive cycle, the chosen behavior is
executed that spawns an expectation codelet which watches
the system clock for the correct time to bring about a safe
shutdown of the agent. Sufficiently ahead of that scheduled
shutdown time, this expectation codelet gives itself high
activation and forms a coalition to come to “consciousness”
(steps 4 and 5 of the cognitive cycle). As a result of the
“conscious” broadcast, the appropriate behavior stream is
instantiated (steps 6 and 7 of the cognitive cycle) and the
behaviors in that stream activate the appropriate self-
preservation codelets to save all the important data
structures of the agent to the disk (steps 8 and 9 of the
cognitive cycle). One of the behaviors in that stream is the
agent-shutdown behavior. Once the important data
structures are saved to the disk, the agent-shutdown
behavior activates to safely shutdown IDA ahead of the
scheduled host system shutdown in step 9 of the cognitive
cycle (surely in a later cycle than the one during which the
scheduled shutdown day and time information came to
“consciousness.”).

When the host system comes back up, IDA is started
automatically and she reinitializes her data structures from
the data saved before the host system shutdown. This
ensures the agent’s survival with no loss of information.

D. Handling emergency host system shutdown
When the host system encounters an emergency, the

operating system sends out a system message to all
processes running on the host system about the oncoming
immediate system shutdown. In this case, IDA’s self-
preservation codelets directly detect those messages after
perception and go into action to preserve the agent’s state
and data. In this scenario, there is no “conscious” broadcast
and codelets go into action in a reflexive mode. They
activate the backup codelets in the various modules that are
responsible for saving the important data structure in those
modules. Once the important data structures are saved, the
relevant self-preservation codelets directly activate behavior
codelets responsible for shutting down the agent in a safe
manner. These behavior codelets facilitate a clean
shutdown of IDA, similar to proactive shutdown described
in Section V.C.

 Note that this process of dealing with emergencies in
the host system requiring a shutdown occurs completely
unconsciously. The cognitive cycle stops after step 2 to
accomplish this process with codelets directly activating one
another. To that extent, it is as if the behaviors involved
were automatized [20] though no learning occurred. We’ve
just described a particular case of a global alarm system a la
Sloman [23]. When the host computer comes back online,
again IDA starts up automatically and reinitializes her data
structures with the saved data.

VI. CONCLUSION

The self-preservation system described herein for IDA

adds significantly to the robustness of the system. It also
takes her one additional step toward being what DARPA
calls a cognitive system. The same techniques can be
employed to add self-healing to IDA. Thus it is also a step
in the direction of IBM’s autonomic computing. And, a
portion of IDA’s self-preservation system implements
Sloman’s global alarm.

Being able to implement the additional capability of
self-preservation mechanisms within the existing IDA
architecture and its iterating cognitive cycle with only
existing structures demonstrates, once again, the suitability
of this architecture for developing highly complex and
intelligent software agents. We have also discussed the need
for such a self-preservation system for software agents, and
described the various situations in which such systems
would come into play.

VII. FUTURE WORK

In the next stage of this research, we plan to implement

this design into the computational IDA and experiment with
it. We also plan to provide IDA with various other aspects
of a self. An autobiographical self can be readily
accomplished through the declarative memory
implementation in IDA [21]. Other aspects of a self,
including self-concept, a volitional self, and a narrative self,
should all prove amenable to implementation within IDA’s
existing architecture including her continually iterated
cognitive cycle.

ACKNOWLEDGMENT

The first author is supported in part by NIH Cancer
Center Support CORE grant, P30 CA-21765 and by the
American Lebanese Syrian Associated Charities (ALSAC).
The authors acknowledge the support of the Conscious
Software Research Group.

REFERENCES

[1] Allen, J. J. (1995) Natural Language Understanding. Redwood

City CA: Benjamin/Cummings.
[2] Anwar, A., and S. Franklin. (2003) Sparse Distributed Memory

for "Conscious" Software Agents. Cognitive Systems Research
4:339-354.

[3] Baars, Bernard J. (1988) “A Cognitive Theory of
Consciousness,” Cambridge: Cambridge University Press.

[4] Baars, Bernard J. (1997) “In the Theater of Consciousness,”
Oxford: Oxford University Press.

[5] Bogner, M., U. Ramamurthy, and S. Franklin. (2000)
“Consciousness" and Conceptual Learning in a Socially
Situated Agent,” In Human Cognition and Social Agent
Technology, ed. K. Dautenhahn. Amsterdam: John Benjamins.

[6] Ericsson, K. A., and W. Kintsch. (1995) Long-term working
memory. Psychological Review 102:21–245.

[7] Franklin, Stan (1997) “Autonomous Agents as Embodied AI,”
Cybernetics and Systems' Special issue on Epistemological
Aspects of Embodied AI, 28:6 499-520.

[8] Franklin, S. and A. C. Graesser (1997) "Is it an Agent, or just a
Program?: A Taxonomy for Autonomous Agents," In Intelligent
Agents III. Berlin: Springer Verlag.

[9] Franklin, S. (2001) Conscious Software: A Computational View
of Mind. In Soft Computing Agents: New Trends for Designing
Autonomous Systems, ed. V. Loia, and S. Sessa. Berlin:
Springer (Physica-Verlag).

[10] Franklin, S. (2001) Automating Human Information Agents. In
Practical Applications of Intelligent Agents, ed. Z. Chen, and L.
C. Jain. Berlin: Springer-Verlag.

[11] Hofstadter, D. R. (1995), Fluid Concepts and Creative
Analogies, Basic Books.

[12] Hofstadter, D. R., and M. Mitchell. (1994) “The Copycat
Project: A model of mental fluidity and analogy-making,” In
Advances in connectionist and neural computation theory, Vol.
2: logical connections, ed. K. J. Holyoak, and J. A. Barnden.
Norwood N.J.: Ablex.

[13] Jurafsky, D., and J. H. Martin. (2000) Speech and Language
Processing. Englewood Cliffs, NJ: Prentice-Hall.

[14] Kanerva, P. (1988) “Sparse Distributed Memory,” Cambridge
MA: The MIT Press.

[15] Maes, P. (1989) “How to do the right thing,” Connection
Science 1:291–323.

[16] Maturana, H. R. (1975) “The Organization of the Living: A
Theory of the Living Organization,” International Journal of
Man-Machine Studies. 7:313-32.

[17] Maturana, H. R. and Varela, F. (1980) “Autopoiesis and
Cognition: The Realization of the Living,” Dordrecht,
Netherlands: Reidel.

[18] McClelland, J. L., D. E. Rumelhart, et al. (1986) Parallel
Distributed Processing, vol. 1. Cambridge: MIT Press.

[19] Negatu, A., and S. Franklin. (2002) An action selection
mechanism for 'conscious' software agents. Cognitive Science
Quarterly 2:363-386.

[20] Negatu, A., T. L. McCauley, and S. Franklin. (Submitted.)
Automatization for Software Agents.

[21] Ramamurthy, U., S. D’Mello and S. Franklin. (2004) Modified
Sparse Distributed Memory as Transient Episodic Memory for
Cognitive Software Agents. In Procdeedings of IEEE
International Conference on Systems, Man and Cybernetics
(SMC2004).

[22] Sloman, A. (1999) What Sort of Architecture is Required for a
Human-like Agent? In Foundations of Rational Agency, ed.
M. Wooldridge, and A. Rao. Dordrecht, Netherlands: Kluwer
Academic Publishers.

[23] Sloman, A. (1998) Damasio, Descartes, Alarms and Meta-
management. In Proceedings Symposiumon Cognitive Agents:
Modeling Human Cognition. San Diego: IEEE.

[24] Zhang, Z., S. Franklin, B. Olde, Y. Wan, and A. Graesser.
(1998) Natural Language Sensing for Autonomous Agents. In
Proceedings of IEEE International Joint Symposia on
Intellgence Systems 98.

