
Learning Mechanisms for Intelligent Systems

Uma Ramamurthy1, Aregahegn Negatu, and Stan Franklin2,3

urmmrthy@memphis.edu, negatua@msci.memphis.edu, and stan.franklin@memphis.edu
Institute for Intelligent Systems and

Department of Mathematical Sciences
The University of Memphis

1Supported in part by Cancer Center Support CORE grant, P30 CA 21765 and by American Lebanese Syrian Associated Charities (ALSAC)
2Supported in part by ONR grant N00014-98-1-0332
3With essential contributions from the Conscious Software Research Group including Art Graesser, Satish Ambati, Ashraf Anwar, Myles Bogner, Arpad
Kelemen, Irina Makkaveeva, Lee McCauley, Alexei Stoliartchouk, Ravikumar Kondadadi, Zhaohua Zhang

Abstract - In this paper, we describe mechanisms for
several different types of learning being implemented in
“conscious” software agents. We argue that in complex,
dynamic domains, such learning mechanisms are essential
for software agents to adapt and effectively ‘live’ in those
domains. We further believe that a development period
is required for knowledge acquisition. Particularly, in
complex, dynamic domains where knowledge engineering
is expensive, the development period provides a simple,
but cost effective solution to knowledge acquisition. We
speculate on the implications of these mechanisms for the
evolving, complex electronic world, and for human
learning and development.

Index Terms – Cognitive Agent, “Conscious” Software
Agent, Case-based Reasoning, Development Period,
Conceptual Learning, Behavioral Learning.

I. “Conscious” Software Agents

An autonomous agent is a system situated in, and part of,
an environment, which senses that environment, acts on it
in pursuit of its own agenda (Franklin and Graesser
1997}. Autonomous software agents that are equipped
with cognitive features chosen from multiple senses,
perception, concept formation, attention, problem-solving,
decision making, short and long-term memories, learning,
emotions, action-selection, etc. are called cognitive agents
(Franklin 1997).

A “conscious” software agent is defined to be an
cognitive software agent that implements Global
Workspace Theory (Baars 1988, 1997). (No claim of
sentience is being made.) Global Workspace Theory
postulates that human cognition is implemented by a
multitude of small, special purpose processes, almost
always unconscious. Coalitions of such processes, when
aroused by novel, problematic instances, find their way
into a global workspace and thus into “consciousness”.
This limited capacity workspace serves to broadcast the
message of the coalition to all the unconscious processes,

in order to recruit other processes to join in handling the
current novel situation. Thus consciousness allows us to
deal with novel and problematic situations. All this takes
place in the auspices of goal contexts, perceptual contexts,
conceptual contexts and cultural contexts. Each context is
itself a coalition of processes.

We believe that “conscious” software agents have the
potential to play a synergistic role in both cognitive
theory and intelligent software. Minds can be viewed as
control structures for autonomous agents (Franklin 1995).
A theory of mind constrains the design of a “conscious”
agent, which implements that theory. While a theory is
typically abstract and only broadly sketches an
architecture, an implemented computational design
provides a fully articulated architecture and a complete set
of mechanisms. Moreover, every design decision taken
during an implementation furnishes a hypothesis about
how human minds work. These hypotheses may motivate
experiments with humans and other forms of empirical
tests. Conversely, the results of such experiments
motivate corresponding modifications of the architecture
and mechanisms of the cognitive agent. In this way, the
concepts and methodologies of cognitive science and of
computer science will work synergistically to enhance our
understanding of mechanisms of mind (Franklin 1997).

In this paper, we focus on two such “conscious”
software agents. “Conscious” Mattie (CMattie) is a
“conscious” clerical software agent (McCauley &
Franklin 1998, Negatu & Franklin 1999, Ramamurthy et
al. 1998, Zhang et al. 1998, Bogner et al. 1999). She
composes and emails out weekly seminar announcements,
having communicated by email with seminar organizers
and announcement recipients in natural language. There is
no human involvement other than these email messages.
CMattie’s cognitive modules include perception, action
selection, associative memory, “consciousness”, emotion,
metacognition, and learning. Her mechanisms include
variants and/or extensions of Maes' behavior nets (1990) ,
Hofstadter and Mitchell's Copycat architecture (1994),
Jackson's pandemonium theory (1987), Kanerva's sparse

Figure 1: CMattie’s Architecture

distributed memory (1988), and Holland's classifier
systems (Holland 1986) .

IDA (Intelligent Distribution Agent) is a “conscious”
software agent being developed for the US Navy
(Franklin et al. 1998). At the end of each sailor's tour of
duty, he or she is assigned to a new billet. This
assignment process is called distribution. The Navy
employs some 300 people, called detailers, full-time to
effect these new assignments. IDA's task is to facilitate
this process, by playing the role of detailer. She must
communicate with sailors via email and in natural
language, understanding the content and producing life-
like responses. Sometimes she will initiate conversations.
She has to access several databases and understand the
contents in these databases. She must adhere to some
ninety Navy policies and thus ensure that the Navy’s
needs are satisfied. She must not only hold down moving
costs, she also must cater to the needs and desires of the
sailor as much as is possible. Finally, she has to write the
orders and send them to the sailor.

II. “Conscious” Software Architecture and
Mechanisms

These agents have quite complex architectures, with IDA
being an order of magnitude more complex than CMattie.
Figure 1 details CMattie’s architecture.

In both the CMattie and IDA architectures, the
processors postulated by global workspace theory are
implemented by codelets, which are small pieces of code.
These are specialized for some simple task and often play
the role of demons waiting for appropriate conditions
under which to act. The apparatus for producing
“consciousness” consists of a coalition manager, a
spotlight controller, a broadcast manager, and a collection
of attention codelets who situations with novel input
(Bogner et al. 1999). Each attention codelet keeps a
watchful eye out for some particular situation to occur
that might call for “conscious” intervention. Upon
encountering such a situation, the appropriate attention
codelet will be associated with the small number of
codelets that carry the information describing the
situation. This association should lead to the collection of

this small number of information codelets, together with
the attention codelet that collected them, becoming a
coalition. Codelets also have activations. The attention
codelet increases its activation in order that the coalition
might compete for “consciousness” if one is formed.

In CMattie and IDA, the coalition manager is
responsible for forming and tracking coalitions of
codelets. Such coalitions are initiated on the basis of the
strengths of the mutual associations between the member
codelets. At any given time, one of these coalitions finds
it way to “consciousness,” chosen by the spotlight
controller, who picks the coalition with the highest
average activation among its member codelets. Global
workspace theory calls for the contents of
“consciousness” to be broadcast to each of the codelets in
the system. The broadcast manager accomplishes this.

Perception Module: CMattie senses text. Her
perception consists of understanding the text of incoming
email messages in natural language. In sufficiently
narrow domains, natural language understanding may be
achieved via an analysis of surface features without using
a traditional symbolic parser. CMattie’s limited domain
requires her to deal with about a dozen distinct message
types, each with relatively predictable content. This
allows CMattie to use surface level natural language
processing. CMattie’s perception module is implemented
based on the Copycat architecture (Hofstadter and
 Mitchell 1994). The mechanism includes a slipnet that
stores the domain knowledge of the agent and a pool of
codelets (processors) specialized for specific recognition
and identification tasks, along with templates for building
and verifying understanding. Together, they comprise an
integrated perceptual system for CMattie. With it, she

Figure 2: Segment of the Slipnet in CMattie’s

Perception Module

recognizes, categorizes and understands incoming email

messages. Message type nodes in the slipnet correspond
to perceptual contexts in Global Workspace Theory.

IDA’s perception module is modeled after those of
CMattie, but is more complex. IDA’s perception module
must handle incoming email messages from sailors. She
has a much more extensive slipnet to hold her domain
knowledge and a larger pool of supporting codelets. IDA
must also understand data received from the sailors’
personnel records, from a listing of currently available
jobs and from other related databases.

Action-Selection Module: Both CMattie and IDA
depend on a behavior net (Maes 1990) type mechanism
for high-level action selection in the service of built-in
drives. Each has several distinct drives operating in
parallel. These drives vary in urgency as time passes and
the environment changes. Behaviors, corresponding to
goal context in Global Workspace Theory, are typically
mid-level actions, many depending on several codelets for
their execution. A behavior net is composed of behaviors
and their various links. A behavior looks very much like a
production rule, having preconditions as well as additions
and deletions. A behavior is distinguished from a
production rule by the presence of an activation, a number
indicating some kind of strength level. Each behavior
occupies a node in a digraph (directed graph). The three
types of links of the digraph are completely determined
by the behaviors. If a behavior X will add a proposition b,
which is on behavior Y's precondition list, then there is a
successor link from X to Y. There may be several such
propositions resulting in several links between the same
nodes. Next, whenever there is a successor going one
way, there exists a predecessor link going the other.
Finally, suppose there exists a proposition m on behavior

Y's delete list that is also a precondition for behavior X. In
such a case, there is a conflictor link from X to Y, which
is inhibitory rather than excitatory.

As in connectionist models, this digraph spreads
activation. The activation comes from activation stored in
the behaviors themselves, from the environment, from

drives, and from internal states. The environment awards
activation to a behavior for each of its true preconditions.
The more relevant it is to the current situation, the more
activation it's going to receive from the environment. This
source of activation tends to make the system
opportunistic. Each drive awards activation to every
behavior that, by being active, will satisfy that drive. This
source of activation tends to make the system goal
directed. Certain internal states of the agent can also send
activation to the behavior net. This activation, for
example, might come from a coalition of codelets
responding to a “conscious” broadcast. Finally, activation
spreads from behavior to behavior along links. Along
successor links, one behavior strengthens those behaviors
whose preconditions it can help fulfill by sending them
activation. Along predecessor links, one behavior
strengthens any other behavior whose add list fulfills one
of its own preconditions. A behavior sends inhibition
along a conflictor link to any other behavior that can
delete one of its true preconditions, thereby weakening it.
Every conflictor link is inhibitory. A behavior is
executable if all of its preconditions are satisfied. To be
acted upon, a behavior must be executable, must have
activation over threshold, and must have the highest such
activation. Behavior nets produce flexible, tunable action
selection for these agents.

Action selection via behavior net suffices for CMattie
due to her relatively constrained domain. IDA’s domain is
much more complex, and requires temporal deliberation
in the sense of creating possible scenarios, partial plans of
actions, and choosing between them (Sloman 1999). For
example, suppose IDA is considering a sailor and several
possible jobs, all seemingly suitable. She must construct a
scenario for each of these possible billets. In each
scenario the sailor leaves his or her current position
during a certain time interval, spends a specified length of
time on leave, possibly reports to a training facility on a
certain date, and arrives at the new billet with in a given
time frame after utilizing travel time. Such scenarios are
valued on how well they fit the temporal constraints and
on moving and training costs.

Scenarios are composed of scenes. IDA’s scenes are
organized around events. They are constructed in a
computational workspace corresponding to working
memory in humans. We use Barsalou’s perceptual symbol
systems as a guide (Barsalou 1999). The
perceptual/conceptual knowledge base of this agent takes
the form of a semantic net with activation called the
slipnet, as described above. The name is taken from the
Copycat architecture that employs a similar construct
(Hofstadter et al. 1994). Nodes of the slipnet constitute
the agent’s perceptual symbols. Pieces of the slipnet
containing nodes and links, together with codelets whose
task it is to copy the piece to working memory constitute
Barsalou’s perceptual symbol simulators. These
perceptual symbols are used to construct scenes in

working memory. The scenes are strung together to form
scenarios. The work is done by deliberation codelets,
including attention codelets. Evaluation of scenarios is
also done by codelets.

Deliberation, as in humans, is mediated by the
“consciousness” mechanism. Imagine IDA in the context
of a behavior stream (see Behavioral Learning below)
whose goal is to find a billet for a particular sailor.
Perhaps a behavior executes to read appropriate items
from the sailor’s personnel database record. Then,
possibly, comes a behavior stream to locate the currently
available billets. Next might be a behavior stream that
runs each billet and that sailor through IDA’s constraint
satisfaction module, producing a small number of
candidate billets. Finally a deliberation behavior may be
executed that sends deliberation codelets to working
memory together with codelets carrying billet
information. A particular billet’s codelets wins its way
into “consciousness.” Scenario building codelets respond
to the broadcast and begin creating scenes. This scenario
building process, again as in humans, has both it’s
“unconscious” and its “conscious” activities. Eventually
scenarios are created and evaluated for each candidate
billet and one of them is chosen. Thus we have behavior
control via deliberation.

The mediation by the “consciousness” mechanism, as
described in the previous paragraph is characteristic of
IDA. The principle is that she should use “consciousness”
whenever a human detailer would be conscious in the
same situation. For example, IDA could readily recover
all the needed items from a sailor’s personnel record
unconsciously with a single behavior stream. But, a
human detailer would be conscious of each item
individually. Hence, according to our principle, so must
IDA be “conscious” of each retrieved personnel data item.
This would allow a “conscious” response to an anomalous
data item, for example.

III. Development and Learning

We believe that “conscious” software agents will require
a development period to acquire the necessary domain
knowledge of their domains. This was not particularly
necessary in CMattie, but is very much needed for more
complex agents like IDA. Each detailer is responsible for
a particular community of sailors defined by job skills and
pay grade, e.g. sonar technicians, E6-E9. IDA, our
software detailer agent, is being designed to serve a single
community, as do all human detailers. A tremendous
amount of knowledge is required, much of it common to
all detailers, but quite a lot is specialized to the particular
community. For a single such agent serving one
community, well-developed AI knowledge engineering
techniques will suffice to gather and encode the needed
knowledge. But, what about agents for all the other
hundred or so communities? A knowledge engineering

approach seems prohibitively expensive both in money
and time.

We foresee a three-phase development process in
IDA. During the first phase, the IDA observes the human
detailer in action, acquiring the domain knowledge and
learning the new concepts and behaviors for this acquired
knowledge. Such learning would occur by conversational
interaction by IDA with the human detailer. During the
second phase, IDA interacts with the sailors in the
community with the human detailer observing and
making suggestions. During this phase, all
communication from IDA to the sailor would pass
through the human detailer. In phase three, which is
initiated by the human detailer, IDA would correspond
directly with the sailor, but still receive suggestions from
the human detailer. When the human detailer initiates
the completion of this third phase, IDA will begin to act
entirely independently. Though the development period
would have ended by then, IDA will continue to learn
from interactions with sailors and commands. IDA, at her
own discretion or that of a sailor, can ask for the
assistance of a human supervisor.

IV. Learning mechanisms employed

Learning occurs in various modules of these “conscious”
agents. We briefly discuss several of these learning
mechanisms, and then focus on conceptual and behavioral
learning in these agents.

Learning into Associative Memory: There is a type
of declarative learning in the Associative Memory
modules of these agents. Both CMattie and IDA employ
sparse distributed memory (SDM) as their major
associative memories (Kanerva 1988). When these
agents create a new percept, such a percept, consisting of
the incoming information as modified by associations and
the current emotion and behavior, is written to associative
memory. For a quite unusual percept, this learning in
Associative Memory may be only memorization. For
more common percepts some sort of generalization takes
place as a result of the mechanism of SDM. For example,
CMattie learns the usual times of a particular seminar, and
will send an inquiry to the organizer should a different
time be specified. Due to her much more complex
domain, we expect IDA to learn into associative memory
in much more sophisticated ways. For example, she may
well associate a certain class of sailors, identified by pay
grade, job skills, length of obligatory service remaining,
etc., with a preference for certain types of billets.

Learning concept codelets: A type of procedural
learning occurs in the playing field of these agents.
Codelets in CMattie and IDA participate in a
pandemonium theory style organization (Jackson 1987).
On the playing field we find the active codelets. Some of
these are joined in coalitions. One such coalition should
lie in the spotlight of “consciousness”. Those codelets

who share time in the spotlight of “consciousness” have
associations between them formed or strengthened, or
perhaps diminished if things are going badly. Coalitions
of highly associated codelets may merge to form higher-
level concept codelets. A concept codelet, when active,
performs the same actions as do its member codelets
combined. This is comparable to chunking in SOAR
(Laird et al. 1987). When the same coalition of codelets,
acting in parallel or in sequence, often produce a useful
result, this coalition can be expected to merge into a
concept codelet. This merging constitutes a second form
of temporal proximity learning. Though we have
implemented the mechanisms for such learning of concept
codelets in both CMattie and IDA, we have as yet not
found situations where such learning might be useful in
these two agents. We do believe that such learning would
be necessary in other complex “conscious” agents.

Learning of emotional influence: In both CMattie
and IDA we include mechanisms for emotions (McCauley
& Franklin 1998). The mechanism employed is similar to
neural network. In IDA, a network is built up by
connecting the attention/emotion codelets to key
behaviors, goals, drives, perception codelets, etc. The
links of this network are to have weights and carry
activation. Weights will decay with disuse. Each use tends
to decrease the decay rate. Weights will increase
according to a sigmoidal function of any activation
carried over the link, allowing for Hebbian style learning.
Thus, IDA learns to use emotions to affect various
cognitive functions as we humans do.

Metacognitive Learning: Metacognition should
include knowledge of one’s own cognitive processes, and
the ability to actively monitor and consciously regulate
them. This would require self-monitoring, self-evaluation,
and self-regulation. Metacognition in CMattie is
implemented as a fuzzy classifier system in order that it
may learn. Learning actions always requires feedback on
the results of prior actions. The Evaluator sub-module is
implemented by a reinforcement learning algorithm
(Barto et al. 1981) that assigns reward or punishment to
classifiers based on the next inner percept. It also uses a
reinforcement distribution algorithm (Bonarini 1997) to
distribute credit among the classifiers. When things are
not going too well over a period of time, learning occurs
via a genetic algorithm (Holland 1975) acting to produce
new classifiers.

V. Conceptual Learning

Perception is accomplished in these agents by recognizing
and analyzing the surface features of the email/electronic
communication between the agent and the humans that
the agent interacts with. The perception modules in both
CMattie and IDA consist of (1) an Input/Output module
which acts as an email interface between the “conscious”
agent and the sailors or human supervisor, (2) a slipnet

which is a network of nodes and links containing the
agent’s permanent perceptual concepts, (3) a working
memory that holds the contents of the received input from
the agent’s domain, the text, and (4) a case-based memory
which acts as the episodic memory of the agent, storing
episodes and traces of learning that occurs through case-

Figure 3: CMattie’s Perception Module

based reasoning.

The perception modules of these agents have a
limited number of concepts already defined in their
slipnets. For example, CMattie “knows” what a seminar
is, through the built-in seminar concept and its features.
Similarly, IDA “knows” about PRD (projected relocation
date), location, training, wait for a new job requisition list,
request for a specific billet, etc. These are defined as
built-in concepts in IDA’s perception module.

When new inputs are sensed in the domain of these
agents, they must learn new concepts and possibly new
codelets in order to function in such dynamic domains.
The conceptual learning in these agents is based on the
following two premises: (1) agents learn based on what
they already know; and (2) agents see every new situation
in terms of at least one previously solved problem.

“Consciousness” acts a facilitator for learning in
these agents. Conceptual learning occurs through internal
interaction between “consciousness” and the perception
module. The “conscious” broadcast recruits codelets that
can contribute to the current problem or task for which
they are relevant. The activation of such codelets
increases, motivating them to become active. One such
task is the conceptual learning mechanism in these agents.

Conceptual learning is effected through conversations
with other (human) agents in the domain of these
“conscious” agents, and implemented using case-based
memory and case-based reasoning (Kolodner 1993). To
be able to converse with others in their domains,
“conscious” agents have some level of natural language
capability built into them.

For example, in CMattie, the agent begins a
conversation with the seminar organizer when she
receives a message that contains words or phrases with
which she is not familiar. She categorizes such messages
as “don’t understand” messages. She may also start a
conversation when she receives a “negative” message

from a seminar organizer that has some negative
connotation. When the perception process is complete,
the message type with its relevant features including the
unfamiliar words/phrases or the negative connotation is
written to the Focus of the “Consciousness” module, the
module’s interface with both associative and episodic
memory. During the next “conscious” broadcast, codelets
are recruited which instantiate a behavior stream that
results in selecting a composition template to write a
“question” message to the seminar organizer asking
him/her to explain and help the agent understand those
unfamiliar words/phrases or the negative connotation.

When the seminar organizer replies to this “question”
message, the agent perceives that as an “answer” message
from its surface features. Perception of an “answer”
message triggers a “conscious” read from case-based
memory. Such a memory-read retrieves the “question”
message that elicited this “answer” message and all the
messages related to this particular case. This provides the
agent with the context that is necessary to continue the
conversation and facilitate learning of new concepts.

Consider the situation that IDA will encounter when
the Navy acquires a new type of sonar equipment. IDA
has to learn about this new equipment.. She must learn
about the training required for this equipment, the
facilities where such training will be given, and where to
look for dates and times.

When a sonar technician writes to IDA expressing his
interest in undergoing training for the new equipment and
in getting posted to a position where such equipment is in
use, IDA will contact a human supervisor to find out
about this new sonar equipment. Through “conversation”
with the human supervisor and by her case-based
reasoning capabilities, she will learn that the new
equipment is a type of sonar equipment, its name and
other specifics about the new equipment. (Since each
equipment has specific NEC, she will eventually learn
that this new equipment would require job qualification
and training.) Since IDA already has other types of sonar
equipment and their related information built in her
perception module, she will add necessary new slipnet
nodes and related new codelets to the perception module.
To complete the acquisition of this new domain
knowledge in her perception module, new relevant links
between existing slipnet nodes and the new nodes will be
created. Once this conceptual learning process is
complete, IDA will be able to perceive and communicate
effectively with sonar technicians about this new
equipment, the qualifications and the training required for
this new equipment.

IDA stores a trace of such learning in her case-based
memory to enhance her case-based reasoning capabilities.
The case-based reasoning in these agents depends on their
past experiences and their ability to relate to new
problems that they encounter in terms of their past
experiences.

In CMattie, similar conceptual learning occurs when
she encounters new concepts that are similar to her built-
in concepts. This learning mechanism is based on
viewing every novel situation in terms of a previously
known and solved problem. When CMattie receives a
message about a non-seminar event, say a Colloquium,
she treats it as a seminar event and sends an
acknowledgement to the sender stating that she is
initializing a new seminar by the name “Colloquium
Seminar”. This acknowledgement might elicit one of
several possible responses from the sender:

(1) The sender might send her a negative
response, which will result in a conversation
and thus an episode;

(2) CMattie includes the Colloquium Seminar in
her weekly seminar announcement as the
sender ignores her incorrect
acknowledgement. This weekly
announcement with the incorrect seminar
might elicit a negative response from the
sender;

(3) The sender might ignore the incorrect weekly
announcement, but is likely to respond when
CMattie reminds him the following week
about the pending Colloquium seminar slot in
the next week’s seminar announcement;

(4) The sender might ignore all of CMattie’s
reminders. That itself acts as a feedback to
CMattie, giving rise to a new concept which
is similar to the seminar concept but with a
different periodicity feature.

Regardless of which route the episode generation
takes, CMattie eventually learns a new concept called
Colloquium that is closely related to her built-in seminar
concept.

In these “conscious” software agents, there are two
main capabilities for bringing about conceptual learning.
The agent has codelets in her perception module that look
for words and phrases that she has not previously
encountered. The perception module tracks such new
words and phrases that occur with regularity by
maintaining statistics and recognizing novelty. This aids
in the agent’s natural language understanding. The agent
is capable of understanding messages with negative
connotations.

Every time the agent learns a new concept, a trace of
such learning is stored in the agent’s case-based memory.
These stored episodes enhance her case-based reasoning
capabilities. After learning the Colloquium concept,
CMattie might encounter a Dissertation Defense message.
Since her case-based reasoning capability depends on past
experiences and her ability to understand new situations
in terms of her past experiences, she recalls her
experience with the first Colloquium message and will be
able to relate the two concepts together through her
conversation with the sender of the message.

When the agent learns a new concept, a new slipnet
node has to be created, with its related set of features
implemented as other nodes. Thus, based on the context
and relationships, these newly generated nodes have to be
connected to the existing nodes in the slipnet. The slipnet
is implemented in XML and with these agents being
implemented in Java. The creation of new nodes becomes
effective and simplified through the modification of and
addition to the XML tree.

Once the agent has learnt a new concept in her
perception module, she will need new behaviors to act
effectively when she encounters instances of these new
concepts in her domain. The behavioral learning
mechanism (discussed next) in these agents enable them
to learn new behaviors to act effectively in their dynamic
domains.

VI. Behavioral Learning

Any agent (artificial or biological) senses, perceives

and acts in order to satisfy its built in drives. The ever-
present challenge for any agent is to produce the
appropriate action relevant to internal states modulated by
a perceived environmental situation. That is, the action
selection mechanism of an agent decides what to do next.

In CMattie and IDA, new concepts get introduced via
their conceptual learning mechanisms. New concepts
require new behaviors, thus requiring an action selection
module with a capability to learn. As shown in Figure 4,
our behavioral learning system, to realize its adaptive
action selection capability, uses four major components:

 Figure 4: Behavioral Learning Module

 1) The behavior network (BN) system can be viewed

as a collection of behavior streams (action plans). Each
such stream is a connected partially ordered set of
behaviors (plan operators) that serve to satisfy a goal or
sub-goal of the agent. A behavior stream is a partially
ordered plan which guides execution of behaviors (plan
operators) so as to effect the required transition from the
initial state (mainly dependent on the internal
representation of the perception) to the goal state. The BN
system has additional functions including interface with
consciousness and priming.

2) The Case-Based Planner (CBP) is a case based
reasoning (CBR) system (Kolodner 1993). In general, a
CBR system is a paradigm that solves new problems by
adapting prior solutions to old problems and, to do so, it
supports retrieval, adaptation, and retention processes. In
our system, the CBP (Monza-Avila 1998, Veloso 1994)
must have a flexible plan learning/adaptation mechanism.
The CBP’s processes operate on a unit of information
called a case. In our adaptive action selection
mechanism, a case is represented as a triplet consisting of
<problem description, solution, outcome>. A problem
description includes the initial state of the problem
situation (the contents of the focus, relevant coalitions of
codelets, and feature values of relevant concepts, relevant
registers in working memory, etc), one or more (sub)goals
that need to be satisfied in such a problem situation, and
associated behavior streams (action plans) that achieve
those goals. A solution is an action plan (behavior stream)
whose execution beginning at the initial state of the
problem achieves its stated (sub)goal(s); each of which in
turn satisfying one or more of the innate drives which are
that represent the primary motivation of the agent. An
outcome is the expected result (for example, feedback
from a human) when the solution plan is applied in the
initial state.

3) The Knowledge-Base (KB) is used to store
information needed in the behavioral learning process.
That is, it contains all domain related knowledge, built-in
and/or learnt, which is specific to the agent’s action
selection mechanism.

4) The CBP/BN-Interface module uses the KB
module to couple the BN and the CBP modules, and to
facilitate the knowledge acquisition process. It is used to
(a) store newly acquired domain knowledge into the KB,
(b) compile the problem description (from the BN side) in
the format the CBP can use, (c) format a newly obtained
plan (from the CBP) so that it can be integrated into the
BN system and (d) facilitate effective conversation with
human (via the BN) by providing information available in
the CBP and/or the KB. The CBP/BN-interface uses its
own working memory (WM).

To start with, our "conscious" agent is provided with
a BN including a set of behavior streams (action plans)
capable of producing actions appropriate to already
known current concepts and situations in the domain. In
IDA, there are built in streams to produce actions that a
detailer performs relative to already known constraints
such as available jobs and their required skills, a sailors’
skills and experience, etc.

It is important that these agents adapt to new
situations in their environments. In the case of IDA,
change could come from the addition or deletion of a type
of job, an introduction of a new technology and the
corresponding skills needed by sailors, or by a change of
Navy policy (constraints) under which job assignments
are made.

Behavioral learning here is based on two principles:
(a) the agent will use past experience to learn new
behavior streams by adapting old plans that worked in
similar situations, (b) the agent must carry on
conversations with humans to acquire new domain
knowledge. This also allows for feedback on the accuracy
of new plans and for necessary revisions.

Suppose that IDA has learnt of new sonar equipment
having been acquired. Once this equipment is
conceptualized, IDA should learn how to produce the
appropriate actions in relation to this newly acquired
concept. That is, IDA should learn to formulate the new
streams needed to interact with sailors and make the
appropriate job assignments by acquiring the knowledge
of what to do relative to the new equipment. The changes
that are needed to be made include creation of new
attention codelets, new scripts, new behavior priming
codelets and new behavior streams.

In CMattie's domain, the perception module can learn
a new concept “colloquium” based on the already known
concept “seminar”. As explained above, one of the
differences that the colloquium and seminar concepts
have is based on the feature value of “periodicity”:
seminar is regular and colloquium is irregular. One of the
tasks CMattie does is to send reminders to a human
organizer of a particular seminar to send her the
information for the coming seminar so that she can
distribute her regular posting in time. If a human
organizer is dealing with colloquium, which is held
irregularly, he or she shouldn’t receive reminders to send
colloquium information. This means, CMattie should
know not to send reminder messages to organizers when
she deals with colloquium. As discussed in a previous
section, the perception mechanism learns the colloquium
concept based on what has been known about the seminar
concept. CMattie should have the capability to adapt its
actions to do the right thing as its domain changes. That
is, with the addition of the colloquium concept in its
domain, it should learn not to send reminder messages to
colloquium organizers while she continues to send
reminders to seminar organizers.

 When a newly learned concept is perceived, the
"consciousness" mechanism broadcasts all the relevant
information to recruit codelets, which will collectively
pick the appropriate behavior stream(s) that will produce
an appropriate response. Since a new concept is involved,
the selected stream may fail to produce an appropriate
action. This failure initiates the behavioral learning cycle.
The learning happens by processing a conversation that
the agent has with its human supervisor. At each
interchange, the learning mechanism adapts streams from
old solutions stored in the CBP system. A single
interchange may not suffice to produce an appropriate
new stream (action plan). But, episodic memory
(implemented using case-based memory) stores the
sequence of interchanges and the trace of the reasoning

used in building a new behavior stream. This, along with
the already acquired domain and control knowledge
stored in the KB and CBP modules, will help in the
effective use of past experience to speed up the learning
process. A successfully learnt stream in the CBP module
gets integrated into the BN system where it can be
instantiated and executed.

In addition to learning new streams, the behavioral
learning process must include the creation of new
coalitions of behavioral codelets that will choose and
instantiate the new stream whenever it becomes relevant.
It must also create the codelets that will implement the
actions of each individual new behavior. All this is
accomplished by copying and modification of existing
codelets.

The behavioral learning of “conscious” agents
happens on-line where its human supervisor (domain
expert) monitors and gives feedback on what the agent
should do in relation to the change in its domain.

VII. Implications for today’s electronic society and

human learning

In complex, dynamic domains, learning is essential
for a software agent to be intelligent and adaptable to
changes in its domain. This is definitely true of today’s
electronic societies. Additionally, the agent interacts with
humans and that brings in an additional layer of
dynamism to the agent’s domain. All these aspects make
it essential for agents to have learning mechanisms. As
we have discussed in this paper, an intelligent system
needs several learning mechanisms to be implemented in
it, if that system is to be life-like, adaptable and smart. In
these agents, learning via several types of mechanisms
allows them to become closely coupled to their domains,
enabling easy adaptation.

Intelligence never comes cheaply. Our “conscious”
software agents require a tremendous amount of
knowledge engineering to live in their dynamic domains.
In such agents, a development period offers a cost-
effective solution to the expensive task of knowledge
engineering. By watching a human-expert and interacting
with that human-expert, the agent acquires domain
knowledge and expertise in a simple and cost-effective
way.

A basic tenet of global workspace theory (Baars
1988) says that consciousness is sufficient for learning.
This is certainly true in our agents. The contents of
“consciousness” are routinely written to associative
memory. Is consciousness also necessary for learning?
The learning of new associations between codelets and
adjustments to such associations happens when their
contents become “conscious.” But it also occurs to a
lesser extent when the codelets are active together, but
unconscious. Our chunking mechanism also does not
routinely come to consciousness, though a newly learned

chunk may well have been “conscious.” This seems to
suggest that some procedural learning, some gradual
improvement of skills may occur unconsciously with
practice.

It also seems that our metacognitive learning occurs
unconsciously. This must be at least partly a flaw in our
model, since at least some metacognitive learning in
humans happens consciously. We also suspect that some
learning of weights in emotion networks of these agents
will occur unconsciously. This seems quite possibly true
of humans as well.

Our goals with these “conscious” software agents are
both cognitive modeling and creation of useful, human-
like, information agents that will ‘live’, learn and grow in
today’s complex, dynamic world of e-commerce, e-
learning and e-business.

References

Baars, B. J. 1988. A Cognitive Theory of Consciousness.

Cambridge: Cambridge University Press.
Baars, B. J. 1997. In the Theater of Consciousness.

Oxford: Oxford University Press.
Barsalou, L. W. 1999. Perceptual symbol systems.

Behavioral and Brain Sciences 22:577–609.
Barto, A. G., R. S. Sutton, and P. S. Brouwer. 1981.

Associative Search Network: a Reinforcement
Learning Associative Memory. Biological
Cybernetics 40:201–211.

Bogner, M., U. Ramamurthy, and S. Franklin. 1999.
“Consciousness" and Conceptual Learning in a
Socially Situated Agent. In Human Cognition and
Social Agent Technology, Advances in
Consciousness Research Series, 19. Ed.
K. Dautenhahn. Amsterdam: John Benjamins.

Bonarini, A. 1997. Anytime Learning and Adaptation of
Structured Fuzzy Behaviors. Adaptive Behavior
Volume 5. Cambridge MA: The MIT Press.

Franklin, S. 1995. Artificial Minds. Cambridge MA: MIT
Press.

Franklin, S. 1997. Autonomous Agents as Embodied AI.
Cybernetics and Systems 28:499–520.

Franklin, S., and A. C. Graesser. 1997. Is it an Agent, or
just a Program?: A Taxonomy for Autonomous
Agents. In Intelligent Agents III. Berlin: Springer
Verlag.

Franklin, S., A. Kelemen, and L. McCauley; 1998; IDA:
A Cognitive Agent Architecture. IEEE Conf on
Systems, Man and Cybernetics.

Hofstadter, R. D., and Mitchell M... 1994. The Copycat
Project: A model of mental fluidity and analogy-
making. In: Advances in connectionist and neural
computation theory, Vol. 2: Analogical connections,
eds. K. J. Holyoak & J. A. Barnden. Norwood N.J.:
Ablex.

Holland, J. H. 1975. Adaptation in Natural and Artificial
Systems. Ann Arbor: University of Michigan Press.

Holland, J. H. 1986. A Mathematical Framework for
Studying Learning in Classifier Systems. In
Evolution, Games and Learning: Models for
Adaption in Machine and Nature, vol. al,
Amsterdam, ed. D. Farmer. : North-Holland.

Holland, J. H., H. J., and Reitman J. S... 1978. Cognitive
Systems Based on Adaptive Algorithms. In: Pattern
Directed Inference Systems (pp. 313 -329), eds. D. A.
Waterman & F. Hayey-Roth. New York: Academic
Press.

Jackson, J. V. 1987. Idea for a Mind. Siggart Newsletter,
181:23–26.

Kanerva, P. 1988. Sparse Distributed Memory.
Cambridge MA: The MIT Press.

Kolodner, J. 1993. Case-Based Reasoning. : Morgan
Kaufman.

Laird, E. J., Newell A., and Rosenbloom P. S... 1987.
SOAR: An Architecture for General Intelligence.
Artificial Intelligence 33:1–64.

Maes, P. 1990. How to do the right thing. Connection
Science 1:3.

McCauley, T. L., and S. Franklin; 1998. An Architecture
for Emotion. AAAI Fall Symposium Emotional and
Intelligent: The Tangled Knot of Cognition"; AAAI;
Orlando, FL.

Monza-Avila, A. Integrating twofold Case Retrieval and
Complete Decision Replay in CAPlan/CbC, Doctoral
dissertation, Dept. of Computer Science, University
of Kaiseslautern, 1998.

Negatu, Aregahegn and S. Franklin, 1999. Behavioral
Learning for Adaptive software Agent. Intelligent
Systems, Proceeding of the ISCA 8th International
Conference, pp. 91 – 95, Denver, Colorado.

Ramamurthy, U., S. Franklin, and A. Negatu. 1998.
Learning Concepts in Software Agents. In From
animals to animats 5: Proceedings of The Fifth
International Conference on Simulation of Adaptive
Behavior, ed. R. Pfeifer, B. Blumberg, J.-A. Meyer ,
and S. W. Wilson. Cambridge, Mass: MIT Press.

Sloman, A. 1999. What Sort of Architecture is Required
for a Human-like Agent? In Foundations of Rational
Agency, ed. M. Wooldridge, and A. Rao. Dordrecht,
Netherlands: Kluwer Academic Publishers.

Veloso, M., Planning and Learning by Analogical
Reasoning, Lecture Notes in Artificial Intelligence,
Springer Verlag, 1994.

Zhang, Z., D. Dasgupta, and S. Franklin. 1998.
Metacognition in Software Agents using Classifier
Systems. In Proceedings of the Fifteenth National
Conference on Artificial Intelligence. Madison,
Wisconsin.

