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Abstract - In this paper, we describe mechanisms for 
several different types of learning being implemented in 
“conscious” software agents.  We argue that in complex, 
dynamic domains, such learning mechanisms are essential 
for software agents to adapt and effectively ‘live’ in those 
domains.  We further believe that a development period 
is required for knowledge acquisition.  Particularly, in 
complex, dynamic domains where knowledge engineering 
is expensive, the development period provides a simple, 
but cost effective solution to knowledge acquisition. We 
speculate on the implications of these mechanisms for the 
evolving, complex electronic world, and for human 
learning and development.  
 
Index Terms – Cognitive Agent, “Conscious” Software 
Agent, Case-based Reasoning, Development Period, 
Conceptual Learning, Behavioral Learning.  
 

I. “Conscious” Software Agents 
 
An autonomous agent is a system situated in, and part of, 
an environment, which senses that environment, acts on it 
in pursuit of its own agenda (Franklin and Graesser 
1997}.  Autonomous software agents that are equipped 
with cognitive features chosen from multiple senses, 
perception, concept formation, attention, problem-solving, 
decision making, short and long-term memories, learning, 
emotions, action-selection, etc. are called cognitive agents 
(Franklin 1997). 

A “conscious” software agent is defined to be an 
cognitive software agent that implements Global 
Workspace Theory (Baars 1988, 1997). (No claim of 
sentience is being made.) Global Workspace Theory 
postulates that human cognition is implemented by a 
multitude of small, special purpose processes, almost 
always unconscious. Coalitions of such processes, when 
aroused by novel, problematic instances, find their way 
into a global workspace and thus into “consciousness”. 
This limited capacity workspace serves to broadcast the 
message of the coalition to all the unconscious processes, 

in order to recruit other processes to join in handling the 
current novel situation. Thus consciousness allows us to 
deal with novel and problematic situations.  All this takes 
place in the auspices of goal contexts, perceptual contexts, 
conceptual contexts and cultural contexts. Each context is 
itself a coalition of processes.   

We believe that “conscious” software agents have the 
potential to play a synergistic role in both cognitive 
theory and intelligent software.   Minds can be viewed as 
control structures for autonomous agents (Franklin 1995).  
A theory of mind constrains the design of a “conscious” 
agent, which implements that theory. While a theory is 
typically abstract and only broadly sketches an 
architecture, an implemented computational design 
provides a fully articulated architecture and a complete set 
of mechanisms.  Moreover, every design decision taken 
during an implementation furnishes a hypothesis about 
how human minds work.  These hypotheses may motivate 
experiments with humans and other forms of empirical 
tests.  Conversely, the results of such experiments 
motivate corresponding modifications of the architecture 
and mechanisms of the cognitive agent. In this way, the 
concepts and methodologies of cognitive science and of 
computer science will work synergistically to enhance our 
understanding of mechanisms of mind (Franklin 1997).   

In this paper, we focus on two such “conscious” 
software agents.  “Conscious” Mattie (CMattie) is a 
“conscious” clerical software agent (McCauley & 
Franklin 1998, Negatu & Franklin 1999, Ramamurthy et 
al. 1998, Zhang et al. 1998, Bogner et al. 1999). She 
composes and emails out weekly seminar announcements, 
having communicated by email with seminar organizers 
and announcement recipients in natural language. There is 
no human involvement other than these email messages. 
CMattie’s cognitive modules include perception, action 
selection, associative memory, “consciousness”, emotion, 
metacognition, and learning. Her mechanisms include 
variants and/or extensions of Maes' behavior nets (1990) , 
Hofstadter and Mitchell's Copycat architecture (1994), 
Jackson's pandemonium theory (1987), Kanerva's sparse  



Figure 1: CMattie’s Architecture 
 
distributed memory (1988), and Holland's classifier 
systems (Holland 1986) .  

IDA (Intelligent Distribution Agent) is a “conscious” 
software agent being developed for the US Navy 
(Franklin et al. 1998). At the end of each sailor's tour of 
duty, he or she is assigned to a new billet. This 
assignment process is called distribution. The Navy 
employs some 300 people, called detailers, full-time to 
effect these new assignments. IDA's task is to facilitate 
this process, by playing the role of detailer.  She must 
communicate with sailors via email and in natural 
language, understanding the content and producing life-
like responses.  Sometimes she will initiate conversations.  
She has to access several databases and understand the 
contents in these databases.  She must adhere to some 
ninety Navy policies and thus ensure that the Navy’s 
needs are satisfied.  She must not only hold down moving 
costs, she also must cater to the needs and desires of the 
sailor as much as is possible.  Finally, she has to write the 
orders and send them to the sailor. 

II. “Conscious” Software Architecture and 
Mechanisms 

 
These agents have quite complex architectures, with IDA 
being an order of magnitude more complex than CMattie. 
Figure 1 details CMattie’s architecture. 

In both the CMattie and IDA architectures, the 
processors postulated by global workspace theory are 
implemented by codelets, which are small pieces of code. 
These are specialized for some simple task and often play 
the role of demons waiting for appropriate conditions 
under which to act. The apparatus for producing 
“consciousness” consists of a coalition manager, a 
spotlight controller, a broadcast manager, and a collection 
of attention codelets who situations with novel input 
(Bogner et al. 1999). Each attention codelet keeps a 
watchful eye out for some particular situation to occur 
that might call for “conscious” intervention. Upon 
encountering such a situation, the appropriate attention 
codelet will be associated with the small number of 
codelets that carry the information describing the 
situation. This association should lead to the collection of 



this small number of information codelets, together with 
the attention codelet that collected them, becoming a 
coalition. Codelets also have activations. The attention 
codelet increases its activation in order that the coalition 
might compete for “consciousness” if one is formed. 

In CMattie and IDA, the coalition manager is 
responsible for forming and tracking coalitions of 
codelets. Such coalitions are initiated on the basis of the 
strengths of the mutual associations between the member 
codelets. At any given time, one of these coalitions finds 
it way to “consciousness,” chosen by the spotlight 
controller, who picks the coalition with the highest 
average activation among its member codelets. Global 
workspace theory calls for the contents of 
“consciousness” to be broadcast to each of the codelets in 
the system. The broadcast manager accomplishes this. 

Perception Module: CMattie senses text. Her 
perception consists of understanding the text of incoming 
email messages in natural language.  In sufficiently 
narrow domains, natural language understanding may be 
achieved via an analysis of surface features without using 
a traditional symbolic parser.  CMattie’s limited domain 
requires her to deal with about a dozen distinct message 
types, each with relatively predictable content.  This 
allows CMattie to use surface level natural language 
processing.  CMattie’s perception module is implemented 
based on the Copycat architecture (Hofstadter and 
 Mitchell  1994).  The mechanism includes a slipnet that 
stores the domain knowledge of the agent and a pool of 
codelets (processors) specialized for specific recognition 
and identification tasks, along with templates for building 
and verifying understanding.  Together, they comprise an 
integrated perceptual system for CMattie.  With it, she  

 
Figure 2:  Segment of the Slipnet in CMattie’s 

Perception Module 
 
recognizes, categorizes and understands incoming email  

messages. Message type nodes in the slipnet correspond 
to perceptual contexts in Global Workspace Theory. 

IDA’s perception module is modeled after those of 
CMattie, but is more complex.  IDA’s perception module 
must handle incoming email messages from sailors. She 
has a much more extensive slipnet to hold her domain 
knowledge and a larger pool of supporting codelets.  IDA 
must also understand data received from the sailors’ 
personnel records, from a listing of currently available 
jobs and from other related databases.   

Action-Selection Module: Both CMattie and IDA 
depend on a behavior net (Maes 1990) type mechanism 
for high-level action selection in the service of built-in 
drives. Each has several distinct drives operating in 
parallel. These drives vary in urgency as time passes and 
the environment changes. Behaviors, corresponding to 
goal context in Global Workspace Theory, are typically 
mid-level actions, many depending on several codelets for 
their execution. A behavior net is composed of behaviors 
and their various links. A behavior looks very much like a 
production rule, having preconditions as well as additions 
and deletions.  A behavior is distinguished from a 
production rule by the presence of an activation, a number 
indicating some kind of strength level. Each behavior 
occupies a node in a digraph (directed graph). The three 
types of links of the digraph are completely determined 
by the behaviors. If a behavior X will add a proposition b, 
which is on behavior Y's precondition list, then there is a 
successor link from X to Y. There may be several such 
propositions resulting in several links between the same 
nodes.  Next, whenever there is a successor going one 
way, there exists a predecessor link going the other. 
Finally, suppose there exists a proposition m on behavior 

Y's delete list that is also a precondition for behavior X. In 
such a case, there is a conflictor link from X to Y, which 
is inhibitory rather than excitatory. 

As in connectionist models, this digraph spreads 
activation. The activation comes from activation stored in 
the behaviors themselves, from the environment, from 



drives, and from internal states. The environment awards 
activation to a behavior for each of its true preconditions.  
The more relevant it is to the current situation, the more 
activation it's going to receive from the environment. This 
source of activation tends to make the system 
opportunistic. Each drive awards activation to every 
behavior that, by being active, will satisfy that drive. This 
source of activation tends to make the system goal 
directed. Certain internal states of the agent can also send 
activation to the behavior net. This activation, for 
example, might come from a coalition of codelets 
responding to a “conscious” broadcast. Finally, activation 
spreads from behavior to behavior along links.  Along 
successor links, one behavior strengthens those behaviors 
whose preconditions it can help fulfill by sending them 
activation. Along predecessor links, one behavior 
strengthens any other behavior whose add list fulfills one 
of its own preconditions. A behavior sends inhibition 
along a conflictor link to any other behavior that can 
delete one of its true preconditions, thereby weakening it. 
Every conflictor link is inhibitory. A behavior is 
executable if all of its preconditions are satisfied. To be 
acted upon, a behavior must be executable, must have  
activation over threshold, and must have the highest such 
activation. Behavior nets produce flexible, tunable action 
selection for these agents. 

Action selection via behavior net suffices for CMattie 
due to her relatively constrained domain. IDA’s domain is 
much more complex, and requires temporal deliberation 
in the sense of creating possible scenarios, partial plans of 
actions, and choosing between them (Sloman 1999). For 
example, suppose IDA is considering a sailor and several 
possible jobs, all seemingly suitable. She must construct a 
scenario for each of these possible billets. In each 
scenario the sailor leaves his or her current position 
during a certain time interval, spends a specified length of 
time on leave, possibly reports to a training facility on a 
certain date, and arrives at the new billet with in a given 
time frame after utilizing travel time. Such scenarios are 
valued on how well they fit the temporal constraints and 
on moving and training costs. 

Scenarios are composed of scenes. IDA’s scenes are 
organized around events. They are constructed in a 
computational workspace corresponding to working 
memory in humans. We use Barsalou’s perceptual symbol 
systems as a guide (Barsalou 1999). The 
perceptual/conceptual knowledge base of this agent takes 
the form of a semantic net with activation called the 
slipnet, as described above. The name is taken from the 
Copycat architecture that employs a similar construct 
(Hofstadter et al. 1994).  Nodes of the slipnet constitute 
the agent’s perceptual symbols. Pieces of the slipnet 
containing nodes and links, together with codelets whose 
task it is to copy the piece to working memory constitute 
Barsalou’s perceptual symbol simulators. These 
perceptual symbols are used to construct scenes in 

working memory. The scenes are strung together to form 
scenarios. The work is done by deliberation codelets, 
including attention codelets. Evaluation of scenarios is 
also done by codelets. 

Deliberation, as in humans, is mediated by the 
“consciousness” mechanism. Imagine IDA in the context 
of a behavior stream (see Behavioral Learning below)   
whose goal is to find a billet for a particular sailor. 
Perhaps a behavior executes to read appropriate items 
from the sailor’s personnel database record. Then, 
possibly, comes a behavior stream to locate the currently 
available billets. Next might be a behavior stream that 
runs each billet and that sailor through IDA’s constraint 
satisfaction module, producing a small number of 
candidate billets. Finally a deliberation behavior may be 
executed that sends deliberation codelets to working 
memory together with codelets carrying billet 
information. A particular billet’s codelets wins its way 
into “consciousness.” Scenario building codelets respond 
to the broadcast and begin creating scenes. This scenario 
building process, again as in humans, has both it’s 
“unconscious” and its “conscious” activities. Eventually 
scenarios are created and evaluated for each candidate 
billet and one of them is chosen. Thus we have behavior 
control via deliberation. 

The mediation by the “consciousness” mechanism, as 
described in the previous paragraph is characteristic of 
IDA. The principle is that she should use “consciousness” 
whenever a human detailer would be conscious in the 
same situation. For example, IDA could readily recover 
all the needed items from a sailor’s personnel record 
unconsciously with a single behavior stream. But, a 
human detailer would be conscious of each item 
individually. Hence, according to our principle, so must 
IDA be “conscious” of each retrieved personnel data item. 
This would allow a “conscious” response to an anomalous 
data item, for example. 
 

III. Development and Learning 
 
We believe that “conscious” software agents will require 
a development period to acquire the necessary domain 
knowledge of their domains.  This was not particularly 
necessary in CMattie, but is very much needed for more 
complex agents like IDA. Each detailer is responsible for 
a particular community of sailors defined by job skills and 
pay grade, e.g. sonar technicians, E6-E9. IDA, our 
software detailer agent, is being designed to serve a single 
community, as do all human detailers. A tremendous 
amount of knowledge is required, much of it common to 
all detailers, but quite a lot is specialized to the particular 
community. For a single such agent serving one 
community, well-developed AI knowledge engineering 
techniques will suffice to gather and encode the needed 
knowledge. But, what about agents for all the other  
hundred or so communities? A knowledge engineering 



approach seems prohibitively expensive both in money 
and time.  

We foresee a three-phase development process in 
IDA. During the first phase, the IDA observes the human 
detailer in action, acquiring the domain knowledge and 
learning the new concepts and behaviors for this acquired 
knowledge.  Such learning would occur by conversational 
interaction by IDA with the human detailer.  During the 
second phase, IDA interacts with the sailors in the 
community with the human detailer observing and 
making suggestions. During this phase, all 
communication from IDA to the sailor would pass 
through the human detailer.  In phase three, which is 
initiated by the human detailer, IDA would correspond 
directly with the sailor, but still receive suggestions from 
the human detailer.  When the human detailer  initiates 
the completion of this third phase, IDA will begin to act 
entirely independently.  Though the development period 
would have ended by then, IDA will continue to learn 
from interactions with sailors and commands.  IDA, at her 
own discretion or that of a sailor, can ask for the 
assistance of a human supervisor. 
 

IV. Learning mechanisms employed 
   
Learning occurs in various modules of these “conscious” 
agents.   We briefly discuss several of these learning 
mechanisms, and then focus on conceptual and behavioral 
learning in these agents.  

Learning into Associative Memory:  There is a type 
of declarative learning in the Associative Memory 
modules of these agents.  Both CMattie and IDA employ 
sparse distributed memory (SDM) as their major 
associative memories (Kanerva 1988).   When these 
agents create a new percept, such a percept, consisting of 
the incoming information as modified by associations and 
the current emotion and behavior, is written to associative 
memory. For a quite unusual percept, this learning in 
Associative Memory may be only memorization. For 
more common percepts some sort of generalization takes 
place as a result of the mechanism of SDM. For example, 
CMattie learns the usual times of a particular seminar, and 
will send an inquiry to the organizer should a different 
time be specified. Due to her much more complex 
domain, we expect IDA to learn into associative memory 
in much more sophisticated ways. For example, she may 
well associate a certain class of sailors, identified by pay 
grade, job skills, length of obligatory service remaining, 
etc., with a preference for certain types of billets.  

Learning concept codelets: A type of procedural 
learning occurs in the playing field of these agents. 
Codelets in CMattie and IDA participate in a 
pandemonium theory style organization (Jackson 1987).  
On the playing field we find the active codelets. Some of 
these are joined in coalitions. One such coalition should 
lie in the spotlight of “consciousness”. Those codelets 

who share time in the spotlight of “consciousness” have 
associations between them formed or strengthened, or 
perhaps diminished if things are going badly. Coalitions 
of highly associated codelets may merge to form higher-
level concept codelets. A concept codelet, when active, 
performs the same actions as do its member codelets 
combined. This is comparable to chunking in SOAR 
(Laird et al. 1987). When the same coalition of codelets, 
acting in parallel or in sequence, often produce a useful 
result, this coalition can be expected to merge into a 
concept codelet. This merging constitutes a second form 
of temporal proximity learning.  Though we have 
implemented the mechanisms for such learning of concept 
codelets in both CMattie and IDA, we have as yet not 
found situations where such learning might be useful in 
these two agents.  We do believe that such learning would 
be necessary in other complex “conscious” agents. 

Learning of emotional influence: In both CMattie 
and IDA we include mechanisms for emotions (McCauley 
& Franklin 1998).  The mechanism employed is similar to 
neural network.  In IDA, a network is built up by 
connecting the attention/emotion codelets to key 
behaviors, goals, drives, perception codelets, etc. The 
links of this network are to have weights and carry 
activation. Weights will decay with disuse. Each use tends 
to decrease the decay rate. Weights will increase 
according to a sigmoidal function of any activation 
carried over the link, allowing for Hebbian style learning. 
Thus, IDA learns to use emotions to affect various 
cognitive functions as we humans do. 

Metacognitive Learning: Metacognition should 
include knowledge of one’s own cognitive processes, and 
the ability to actively monitor and consciously regulate 
them. This would require self-monitoring, self-evaluation, 
and self-regulation. Metacognition in CMattie is 
implemented as a fuzzy classifier system in order that it 
may learn. Learning actions always requires feedback on 
the results of prior actions. The Evaluator sub-module is 
implemented by a reinforcement learning algorithm 
(Barto et al. 1981) that assigns reward or punishment to 
classifiers based on the next inner percept. It also uses a 
reinforcement distribution algorithm (Bonarini 1997) to 
distribute credit among the classifiers. When things are 
not going too well over a period of time, learning occurs 
via a genetic algorithm (Holland 1975) acting to produce 
new classifiers.  

 
V. Conceptual Learning 

 
Perception is accomplished in these agents by recognizing 
and analyzing the surface features of the email/electronic 
communication between the agent and the humans that 
the agent interacts with.  The perception modules in both 
CMattie and IDA consist of (1) an Input/Output module 
which acts as an email interface between the “conscious” 
agent and the sailors or  human supervisor, (2) a slipnet 



which is a network of nodes and links containing the 
agent’s permanent perceptual concepts, (3) a working 
memory that holds the contents of the received input from 
the agent’s domain, the text, and (4) a case-based memory 
which acts as the episodic memory of the agent, storing 
episodes and traces of learning that occurs through case- 

 
Figure 3: CMattie’s Perception Module 

 
based reasoning.  

The perception modules of these agents have a 
limited number of concepts already defined in their 
slipnets.  For example, CMattie “knows” what a seminar 
is, through the built-in seminar concept and its features.  
Similarly, IDA “knows” about  PRD (projected relocation 
date), location, training, wait for a new job requisition list, 
request for a specific billet, etc. These are defined as 
built-in concepts in IDA’s perception module.   

When new inputs are sensed in the domain of these 
agents, they must learn new concepts and possibly new 
codelets in order to function in such dynamic domains.  
The conceptual learning in these agents is based on the 
following two premises:  (1) agents learn based on what 
they already know; and (2) agents see every new situation 
in terms of at least one previously solved problem.  

“Consciousness” acts a facilitator for learning in 
these agents.  Conceptual learning occurs through internal 
interaction between “consciousness” and the perception 
module. The “conscious” broadcast recruits codelets that 
can contribute to the current problem or task for which 
they are relevant.  The activation of such codelets 
increases, motivating them to become active.  One such 
task is the conceptual learning mechanism in these agents. 

Conceptual learning is effected through conversations 
with other (human) agents in the domain of these 
“conscious” agents, and implemented using case-based 
memory and case-based reasoning (Kolodner 1993).  To 
be able to converse with others in their domains, 
“conscious” agents have some level of natural language 
capability built into them.   

For example, in CMattie, the agent begins a 
conversation with the seminar organizer when she 
receives a message that contains words or phrases with 
which she is not familiar.  She categorizes such messages 
as “don’t understand” messages.  She may also start a 
conversation when she receives a “negative” message 

from a seminar organizer that has some negative 
connotation.  When the perception process is complete, 
the message type with its relevant features including the 
unfamiliar words/phrases or the negative connotation is 
written to the Focus of the “Consciousness” module, the 
module’s interface with both associative and episodic 
memory.  During the next “conscious” broadcast, codelets 
are recruited which instantiate a behavior stream that 
results in selecting a composition template to write a 
“question” message to the seminar organizer asking 
him/her to explain and help the agent understand those 
unfamiliar words/phrases or the negative connotation. 

When the seminar organizer replies to this “question” 
message, the agent perceives that as an “answer” message 
from its surface features.  Perception of an “answer” 
message triggers a “conscious” read from case-based 
memory.  Such a memory-read retrieves the “question” 
message that elicited this “answer” message and all the 
messages related to this particular case.  This provides the 
agent with the context that is necessary to continue the 
conversation and facilitate learning of new concepts. 

Consider the situation that IDA will encounter when 
the Navy acquires a new type of sonar equipment.  IDA 
has to learn about this new equipment.. She must learn 
about the training required for this equipment, the 
facilities where such training will be given, and where to 
look for dates and times.   

When a sonar technician writes to IDA expressing his 
interest in undergoing training for the new equipment and 
in getting posted to a position where such equipment is in 
use, IDA will contact a human supervisor to find out 
about this new sonar equipment.  Through “conversation” 
with the human supervisor and by her case-based 
reasoning capabilities, she will learn that the new 
equipment is a type of sonar equipment, its name and 
other specifics about the new equipment. (Since each 
equipment has specific NEC, she will eventually learn 
that this new equipment would require job qualification 
and training.) Since IDA already has other types of sonar 
equipment and their related information built in her 
perception module, she will add necessary new slipnet 
nodes and related new codelets to the perception module.  
To complete the acquisition of this new domain 
knowledge in her perception module, new relevant links 
between existing slipnet nodes and the new nodes will be 
created.  Once this conceptual learning process is 
complete, IDA will be able to perceive and communicate 
effectively with sonar technicians about this new 
equipment, the qualifications and the training required for 
this new equipment.  

IDA stores a trace of such learning in her case-based 
memory to enhance her case-based reasoning capabilities.  
The case-based reasoning in these agents depends on their 
past experiences and their ability to relate to new 
problems that they encounter in terms of their past 
experiences.   

 



In CMattie, similar conceptual learning occurs when 
she encounters new concepts that are similar to her built-
in concepts.  This learning mechanism is based on 
viewing every novel situation in terms of a previously 
known and solved problem.  When CMattie receives a 
message about a non-seminar event, say a Colloquium, 
she treats it as a seminar event and sends an 
acknowledgement to the sender stating that she is 
initializing a new seminar by the name “Colloquium 
Seminar”.  This acknowledgement might elicit one of 
several possible responses from the sender:   

(1) The sender might send her a negative 
response, which will result in a conversation 
and thus an episode;  

(2) CMattie includes the Colloquium Seminar in 
her weekly seminar announcement as the 
sender ignores her incorrect 
acknowledgement. This weekly 
announcement with the incorrect seminar 
might elicit a negative response from the 
sender; 

(3) The sender might ignore the incorrect weekly 
announcement, but is likely to respond when 
CMattie reminds him the following week 
about the pending Colloquium seminar slot in 
the next week’s seminar announcement; 

(4) The sender might ignore all of CMattie’s 
reminders.  That itself acts as a feedback to 
CMattie, giving rise to a new concept which 
is similar to the seminar concept but with a 
different periodicity feature. 

Regardless of which route the episode generation 
takes, CMattie eventually learns a new concept called 
Colloquium that is closely related to her built-in seminar 
concept. 

In these “conscious” software agents, there are two 
main capabilities for bringing about conceptual learning.  
The agent has codelets in her perception module that look 
for words and phrases that she has not previously 
encountered.  The perception module tracks such new 
words and phrases that occur with regularity by 
maintaining statistics and recognizing novelty. This aids 
in the agent’s natural language understanding.  The agent 
is capable of understanding messages with negative 
connotations.   

Every time the agent learns a new concept, a trace of 
such learning is stored in the agent’s case-based memory.  
These stored episodes enhance her case-based reasoning 
capabilities.  After learning the Colloquium concept, 
CMattie might encounter a Dissertation Defense message. 
Since her case-based reasoning capability depends on past 
experiences and her ability to understand new situations 
in terms of her past experiences, she recalls her 
experience with the first Colloquium message and will be 
able to relate the two concepts together through her 
conversation with the sender of the message.   

When the agent learns a new concept, a new slipnet 
node has to be created, with its related set of features 
implemented as other nodes.  Thus, based on the context 
and relationships, these newly generated nodes have to be 
connected to the existing nodes in the slipnet. The slipnet 
is implemented in XML and with these agents being 
implemented in Java. The creation of new nodes becomes 
effective and simplified through the modification of and 
addition to the XML tree. 

Once the agent has learnt a new concept in her 
perception module, she will need new behaviors to act 
effectively when she encounters instances of these new 
concepts in her domain.  The behavioral learning 
mechanism (discussed next) in these agents enable them 
to learn new behaviors to act effectively in their dynamic 
domains.  

 
VI. Behavioral Learning 

 
Any agent (artificial or biological) senses, perceives 

and acts in order to satisfy its built in drives. The ever-
present challenge for any agent is to produce the 
appropriate action relevant to internal states modulated by 
a perceived environmental situation.  That is, the action 
selection mechanism of an agent decides what to do next.   

In CMattie and IDA, new concepts get introduced via 
their conceptual learning mechanisms. New concepts 
require new behaviors, thus requiring an action selection 
module with a capability to learn. As shown in Figure 4, 
our behavioral learning system, to realize its adaptive 
action selection capability, uses four major components: 

 

 
     Figure 4: Behavioral Learning Module 
 
 1) The behavior network (BN) system can be viewed 

as a collection of behavior streams (action plans). Each 
such stream is a connected partially ordered set of 
behaviors (plan operators) that serve to satisfy a goal or 
sub-goal of the agent. A behavior stream is a partially 
ordered plan which guides execution of behaviors (plan 
operators) so as to effect the required transition from the 
initial state (mainly dependent on the internal 
representation of the perception) to the goal state. The BN 
system has additional functions including interface with 
consciousness and priming.  



2) The Case-Based Planner (CBP) is a case based 
reasoning (CBR) system (Kolodner 1993).   In general, a 
CBR system is a paradigm that solves new problems by 
adapting prior solutions to old problems and, to do so, it 
supports retrieval, adaptation, and retention processes.  In 
our system, the CBP (Monza-Avila 1998, Veloso 1994) 
must have a flexible plan learning/adaptation mechanism. 
The CBP’s processes operate on a unit of information 
called a case.  In our adaptive action selection 
mechanism, a case is represented as a triplet consisting of  
<problem description, solution, outcome>. A problem 
description includes the initial state of the problem 
situation (the contents of the focus, relevant coalitions of 
codelets, and feature values of relevant concepts, relevant 
registers in working memory, etc), one or more (sub)goals 
that need to be satisfied in such a problem situation, and 
associated behavior streams (action plans) that achieve 
those goals. A solution is an action plan (behavior stream) 
whose execution beginning at the initial state of the 
problem achieves its stated (sub)goal(s); each of which in 
turn satisfying one or more of the innate drives which are 
that represent the primary motivation of the agent. An 
outcome is the expected result (for example, feedback 
from a human) when the solution plan is applied in the 
initial state.  

3) The Knowledge-Base (KB) is used to store 
information needed in the behavioral learning process. 
That is, it contains all domain related knowledge, built-in 
and/or learnt, which is specific to the agent’s action 
selection mechanism.  

4) The CBP/BN-Interface module uses the KB 
module to couple the BN and the CBP modules, and to 
facilitate the knowledge acquisition process. It is used to 
(a) store newly acquired domain knowledge into the KB, 
(b) compile the problem description (from the BN side) in 
the format the CBP can use, (c) format a newly obtained 
plan (from the CBP) so that it can be integrated into the 
BN system and (d) facilitate effective conversation with 
human (via the BN) by providing information available in 
the CBP and/or the KB. The CBP/BN-interface uses its 
own working memory (WM).   

To start with, our "conscious" agent is provided with 
a BN including a set of behavior streams (action plans) 
capable of producing actions appropriate to already 
known current concepts and situations in the domain.  In 
IDA, there are built in streams to produce actions that a 
detailer performs relative to already known constraints 
such as available jobs and their required skills, a sailors’ 
skills and experience, etc.   

It is important that these agents adapt to new 
situations in their environments.  In the case of IDA, 
change could come from the addition or deletion of a type 
of  job, an introduction of a new technology and the 
corresponding skills needed by sailors, or by a change of 
Navy policy (constraints) under which job assignments 
are made.  

Behavioral learning here is based on two principles: 
(a) the agent will use past experience to learn new 
behavior streams by adapting old plans that worked in 
similar situations, (b) the agent must carry on 
conversations with humans to acquire new domain 
knowledge. This also allows for feedback on the accuracy 
of new plans and for necessary revisions.  

Suppose that IDA has learnt of new sonar equipment 
having been acquired.  Once this equipment is 
conceptualized, IDA should learn how to produce the 
appropriate actions in relation to this newly acquired 
concept.  That is, IDA should learn to formulate the new 
streams needed to interact with sailors and make the 
appropriate job assignments by acquiring the knowledge 
of what to do relative to the new equipment.  The changes 
that are needed to be made include creation of new 
attention codelets, new scripts, new behavior priming 
codelets and new behavior streams. 

In CMattie's domain, the perception module can learn 
a new concept “colloquium” based on the already known 
concept “seminar”.  As explained above, one of the 
differences that the colloquium and seminar concepts 
have is based on the feature value of “periodicity”:  
seminar is regular and colloquium is irregular.  One of the 
tasks CMattie does is to send reminders to a human 
organizer of a particular seminar to send her the 
information for the coming seminar so that she can 
distribute her regular posting in time. If a human 
organizer is dealing with colloquium, which is held 
irregularly, he or she shouldn’t receive reminders to send 
colloquium information.  This means, CMattie should 
know not to send reminder messages to organizers when 
she deals with colloquium.   As discussed in a previous 
section, the perception mechanism learns the colloquium 
concept based on what has been known about the seminar 
concept.  CMattie should have the capability to adapt its 
actions to do the right thing as its domain changes.  That 
is, with the addition of the colloquium concept in its 
domain, it should learn not to send reminder messages to 
colloquium organizers while she continues to send 
reminders to seminar organizers. 

 When a newly learned concept is perceived, the 
"consciousness" mechanism broadcasts all the relevant 
information to recruit codelets, which will collectively 
pick the appropriate behavior stream(s) that will produce 
an appropriate response.  Since a new concept is involved, 
the selected stream may fail to produce an appropriate 
action.  This failure initiates the behavioral learning cycle.  
The learning happens by processing a conversation that 
the agent has with its human supervisor.  At each 
interchange, the learning mechanism adapts streams from 
old solutions stored in the CBP system.  A single 
interchange may not suffice to produce an appropriate 
new stream (action plan).  But, episodic memory 
(implemented using case-based memory) stores the 
sequence of interchanges and the trace of the reasoning 



used in building a new behavior stream. This, along with 
the already acquired domain and control knowledge 
stored in the KB and CBP modules, will help in the 
effective use of past experience to speed up the learning 
process.  A successfully learnt stream in the CBP module 
gets integrated into the BN system where it can be 
instantiated and executed.   

In addition to learning new streams, the behavioral 
learning process must include the creation of new 
coalitions of behavioral codelets that will choose and 
instantiate the new stream whenever it becomes relevant. 
It must also create the codelets that will implement the 
actions of each individual new behavior. All this is 
accomplished by copying and modification of existing 
codelets. 

The behavioral learning of “conscious” agents 
happens on-line where its human supervisor (domain 
expert) monitors and gives feedback on what the agent 
should do in relation to the change in its domain. 
 
VII. Implications for today’s electronic society and 

human learning 
 

In complex, dynamic domains, learning is essential 
for a software agent to be intelligent and adaptable to 
changes in its domain.  This is definitely true of today’s 
electronic societies.  Additionally, the agent interacts with 
humans and that brings in an additional layer of 
dynamism to the agent’s domain.  All these aspects make 
it essential for agents to have learning mechanisms.  As 
we have discussed in this paper, an intelligent system 
needs several learning mechanisms to be implemented in 
it, if that system is to be life-like, adaptable and smart. In 
these agents, learning via several types of mechanisms 
allows them to become closely coupled to their domains, 
enabling easy adaptation. 

Intelligence never comes cheaply.  Our “conscious” 
software agents require a tremendous amount of 
knowledge engineering to live in their dynamic domains.  
In such agents, a development period offers a cost-
effective solution to the expensive task of knowledge 
engineering.  By watching a human-expert and interacting 
with that human-expert, the agent acquires domain 
knowledge and expertise in a simple and cost-effective 
way. 

A basic tenet of global workspace theory (Baars 
1988) says that consciousness is sufficient for learning. 
This is certainly true in our agents. The contents of 
“consciousness” are routinely written to associative 
memory. Is consciousness also necessary for learning? 
The learning of new associations between codelets and 
adjustments to such associations happens when their 
contents become  “conscious.” But it also occurs to a 
lesser extent when the codelets are active together, but 
unconscious. Our chunking mechanism also does not 
routinely come to consciousness, though a newly learned 

chunk may well have been “conscious.” This seems to 
suggest that some procedural learning, some gradual 
improvement of skills may occur unconsciously with 
practice.  

It also seems that our metacognitive learning occurs 
unconsciously. This must be at least partly a flaw in our 
model, since at least some metacognitive learning in 
humans happens consciously. We also suspect that some 
learning of weights in emotion networks of these agents 
will occur unconsciously. This seems quite possibly true 
of humans as well. 

Our goals with these “conscious” software agents are 
both cognitive modeling and creation of useful, human-
like, information agents that will ‘live’, learn and grow in 
today’s complex, dynamic world of e-commerce, e-
learning and e-business.   
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