
Encoding and Retrieval Efficiency of Episodic Data
in a Modified Sparse Distributed Memory System

Sidney K. D’Mello (sdmello@memphis.edu)

Computer Science Department & The Institute for Intelligent Systems,
365 Innovation Drive, Memphis, TN 38152, USA

Uma Ramamurthy (urmmrthy@memphis.edu)

The Institute for Intelligent Systems, 365 Innovation Drive
Memphis, TN 38152, USA

Stan Franklin (franklin@memphis.edu)

Computer Science Department & The Institute for Intelligent Systems,
365 Innovation Drive, Memphis, TN 38152, USA

Abstract

This paper presents detailed simulation results on a modified
Sparse Distributed Memory (SDM) system. We have
modified Kanerva’s original SDM system into an architecture
with a ternary memory space. This enables the memory to be
used as a Transient Episodic Memory (TEM) in cognitive
software agents. TEM is a memory with high specificity and
low retention, used for events having features of a particular
time and place. Our earlier work focused on perfunctory,
proof of concept assessments on the modified SDM system.
This paper presents a detailed experimental evaluation of the
modified SDM system with regard to its ability to store and
retrieve episodic information.

Introduction
Episodic memory is for events having features of a
particular time and place (Baddeley et al, 2001). This
memory system is associative in nature and content-
addressable. It has been proposed that working memory
probably includes an episodic buffer that can hold episodic
information for a short duration (Baddeley, 2000).

Humans have a content-addressable, associative, transient
episodic memory with a decay rate measured in hours
(Conway, 2001). Humans are able to recall in great detail
events of the current day – where they park their cars, whom
they met that morning, what they discussed, what they had
for meals, etc. These details of the events/episodes stay with
us only for short durations – for some hours. We
hypothesize that for cognitive agents to recall such details of
episodes while they interact with and adapt to their dynamic
environments, they need a transient episodic memory
(TEM). The Intelligent Distribution Agent (IDA) is one
such cognitive software agent endowed with a TEM (Baars,
& Franklin. 2003, Franklin et al in review).

IDA is a cognitive software agent (Franklin, 1997)
developed for the U.S. Navy. At the end of each sailor’s
tour of duty, he or she is assigned to a new billet by a person
called a detailer. IDA’s task is to facilitate this process by
completely automating the role of a detailer. The IDA
technology (Franklin, 2001) has a number of different
memory systems, including working memory, transient

episodic memory, and autobiographical/declarative memory
(Ramamurthy, D’Mello, & Franklin, 2003). We
hypothesize that information stored in TEM, which has not
decayed away, is consolidated into declarative memory at
certain intervals.

Transient episodic and declarative memories have
distributed representations in IDA. There is evidence that
this is also the case in animal nervous systems. Some of
these memory models are motivated by Sparse Distributed
Memory (Kanerva, 1988). This is reasonable due to several
similarities between SDM and human memory systems such
as knowing that one knows, tip-of-the-tongue effect,
rehearsal, momentary feelings of familiarity, and
interference. The focus of this paper is on a modified SDM
architecture that promises to be a good candidate for use as
a TEM in software agents such as IDA.

Sparse Distributed Memory
SDM implements a content-addressable random access
memory. Its address space is in the order of 21000. Of this
space, you choose a manageable, uniform random sample,
say 220, of allowable locations. These are called hard
locations. Thus the hard locations are sparse in this address
space. Many hard locations participate in storing and
retrieving of any datum, resulting in the distributed nature of
this architecture. Hamming distance is used to measure the
distance between any two points in this memory space.

Each hard location is a bit vector of length 1000, storing
data in 1000 counters with a range of -40 to 40. Each datum
to be written to SDM is a bit vector of length 1000. Writing
1 to a counter results in incrementing the counter, while
writing a 0 decrements the counter. To write in this memory
architecture, you select an access sphere centered at location
X. So, to write a datum to X, you simply write to all the
hard locations (typically 1000 of them) within X’s access
sphere. This results in distributed storage. This also
naturally provides for memory rehearsal – a memory trace
being rehearsed can be written many times and each time to
about 1000 locations.

 Similar to writing, retrieving from SDM involves the
same concept of access sphere – you read all the hard

locations within the access sphere of location Y, pool the bit
vectors read from all these hard locations and let each of the
kth

 bits of those locations participate in a majority vote for
the kth

 bit of Y. Effectively, you reconstruct the memory
trace in every retrieval operation. Effectively, the read data
at Y is an aggregate of all data that have been written to the
hard locations within Y’s access sphere, but may not be any
of them exactly.

Furthermore, this memory can be cued with noisy
versions of the original memory trace. To accomplish this,
you employ iterated reading – first read at Y to obtain the
bit vector, Y1. Next read at Y1 to obtain the bit vector Y2.
Next read at Y2 to obtain the bit vector, Y3. If this sequence
of reads converges to Y', then Y' is the result of iterated
reading at Y.

The Modified SDM system
Our experimental evaluation of Kanerva’s original SDM for
cognitive agents such as IDA that encode text based
episodic data, indicated the need for an architecture
modification. Episodic data refers to patterns with features
of what, where, and when. Preliminary investigations that
assessed SDM’s ability to encode text based episodic data
revealed two fundamental shortcomings. When events are
unfolding, the feature vector is not always complete. So,
more often, the agent has to store partial feature sets.
Similarly, when the agent cues its memory for retrieval, the
retrieval cues are often partial feature-sets. SDM has no
generic mechanism to handle partiality in the stored patterns
as well as in the retrieval cues. It considers missing features
to be random noise, thereby severely effecting performance.

The second major problem with SDM is its inability to
handle text. Since SDM operates in a Boolean space,
encoding text requires binary representations of characters.
A simple way to enforce this mapping is by encoding the
ASCII representation of characters. For example, the feature
“dog”, would be represented as “01100100 01101111
01100111”. Since interference from related features effects
the retrieved trace, error in recall is introduced. During the
recall procedure, if the second bit of each character in the
binary representation of dog is flipped, the resultant binary
patterns is “00100100 00101111 00100111”. Converting
this recalled binary pattern into text would result in “$/'”,
which at the character level bears absolutely no similarity to
“dog.” This example shows that a 12.5% error in the
retrieval process can completely distort the feature.

The modified SDM system (Ramamurthy et al, 2004)
alleviates several of the shortcomings identified with using
SDM as a computational model for TEM. The modification
includes migrating to a ternary memory space while
maintaining a binary address space for the hard locations.
Adding “don’t cares” (*’s) to the 0’s and 1’s of the binary
space yields a ternary memory space. This accommodates
flexible cuing with fewer features than the actual memory
trace where missing features are represented by “don’t
cares” (*). An adjustment was made to Hamming distance
calculations such that the distance between a “don’t care”
(*) and a 0 or 1 was set to (0.5).

This modification to the memory space also addresses two
essential features of episodic memory systems (Shastri,
2002). Episodic memory systems must have binding-error
detectors and binding-error integrators. Given an event, the
episodic memory trace must respond not only to partial
cues, it should also be capable of distinguishing a
memorized event from very similar events.

Previously simulated experiments revealed that the
modified SDM system produces a significant performance
improvement over the original SDM system (Ramamurthy,
et al, 2004). However, the extent of the improvement was
not formally quantified. Furthermore, several system
parameters that maximize performance were not
investigated. Hence, the experiments presented here attempt
to systematically assess performance of the modified SDM
system’s ability to encode and retrieve episodic information
with variable system parameters. These include upper and
lower bounds on the degree of partiality in the encoded
patterns and the retrieval cues and the size of the pattern set.

Experimental Analysis & Results
The primary focus of the experiments was to compare
performance of the modified and the original SDM
regarding its ability to encode episodic data. Therefore, the
experiments evaluated performance of the two memory
systems when patterns encoded into the memory had an
increasing degree of partiality (missing features in the
pattern). Retrieval was tested with fully specified read-cues
and partial read-cues (binding-integration). Performance of
the modified SDM system when presented with binding-
errors in the retrieval cues have been investigated elsewhere
(Ramamurthy et al, 2004).

The experiments also evaluated whether the modified
SDM reduces some of SDM’s capacity problems. SDM has
been criticized for its relatively low memory capacity
(Keeler, 1988). We evaluated memory capacity by testing
storage and retrieval performance with pattern sets that fill
the memory to approximately 25%, 50%, 75%, and 100%
capacity.

Experimental Setup
The experiments were conducted by randomly initializing
100 memories. A memory in this context refers to a fully
initialized SDM simulation. All performance results were
averaged over these 100 memories. This approach controls
for any bias in the results that may be introduced by the
random memory initialization. All experiments were run on
both the modified as well as the original SDM systems.
Tests were conducted at 4 different memory capacity levels
(C-25 ... C-100): namely 25%, 50%, 75%, and 100% (at
capacity).

Memory Architecture
Each memory was randomly initialized with 10,000 hard
locations. A larger sample of hard locations was avoided
due to computational limitations. The capacity of a 10,000
hard-location-memory, when cued with the exact addresses
of the stored patterns, is approximately 1000 patterns, since

the capacity of SDM is estimated to be 10% of the number
of hard locations (Kanerva, 1988). However, when the
memory is cued with noisy versions of the stored patterns its
capacity greatly decreases to about 1-5% of the number of
hard locations (Kanerva, 1993). Since our experiments
involve encoding episodic data, the stored patterns as well
as the retrieval cues had high partiality. Hence, an estimate
of capacity based on episodic data was taken to be 1% of the
number of hard locations. Therefore, in order to fill the
memory to 25% capacity, 24 episodes were encoded; to fill
memory to 50% capacity, 48 episodes were encoded, etc.
Further, a model for TEM does not enforce stringent
capacity requirements due to TEM’s low retention, which
can be enforced via an appropriate decay mechanism.

The dimensionality of the memory space was set at 448,
based on the case-grammar template (Fillmore, 1968) used
in the experiments. The case-grammar template selected is
illustrated in Figure 1, with examples of fully specified
feature-sets and partially specified feature-sets representing
patterns used for encoding and retrieval.

Pattern Selection
Tests at each capacity level included 6 memory write sets
(W0 … W5), each with an increasing degree of partiality in
the patterns. Patterns in set W0 were fully specified (no
“don’t cares”), while patterns in set W5 had 5 “don’t cares”
(62.5% partiality). “Nathan accepts * Michael venture
scheme eatery *” is an example of a partial memory-write
for the W2 category (2 “don’t cares”). Here, the recipient-
adjective and the time features have been replaced with
“don’t cares” (*). The number of patterns within each write
set was specified by the level of capacity being tested.

Retrieval on each memory write set (W0 ... W5) was
tested by 4 read-cue sets (R0 ... R3), each with an increasing
degree of missing features in addition to the missing
features of the write sets. As an example, consider a 62.5 %
partial read-cue: “Nathan * * * venture scheme * *”. This is
a R3 read-cue as it contains three missing features in
addition to the two missing features in the encoded pattern
shown above. The number of patterns within each read-cue
set was the same as the write set that it is being tested on.

Figure 1: Case-grammar template

Results & Discussion
The encoding efficiency of the Modified SDM system was
compared to the original SDM system by assessing its
pattern distribution and interference reduction abilities.
Retrieval performance was estimated by assessing the
convergence rate (retrieval rate), the quality of retrieval, and
by a novel performance metric.

According to the experimental design, retrieval of every
pattern in each write set (W0 ... W5) was evaluated by 4
different read cue sets (R0 ... R4). Due to space constraints,
the retrieval results presented below have been averaged
over these four different read cue sets.

Pattern Distribution
The distributed nature of SDM’s architecture requires that a
pattern should be encoded to approximately 1% of the hard
locations. Although, such a distributed representation is
beneficial in terms of its ability to handle partial failure, it
introduces severe interference problems. Interference refers
to large overlaps between the access spheres of related
patterns. This is due to the hard locations being randomly
initialized, while the encoded patterns are not evenly
distributed and tend to cluster in the memory space. To
account for this phenomenon, we introduced a simple
measure to assess the distribution of a set of patterns in the
memory space called the activity. A hard location is said to
be active if it is involved in encoding at least one pattern.
The activity of a memory is simply the percentage of its
hard locations that are active. Therefore, as the memory is
filled to its capacity, a good distribution should demand that
its activity should proportionally increase. Figure 2 presents
a comparison of the activity of the original and modified
SDM as the memory was filled to capacity.

From Figure 2, we see the activities of both memories
increased as the size of the pattern set increased (analogous
to the memory being filled to capacity). The activity of the
modified SDM was on an average 5.19% higher than the
original SDM. This indicates that the modified SDM was
more effective in distributing patterns with partial features
even as the memory was filled to capacity.

Activity of Hard Locations v.s. Memory Capacity

0

5

10

15

20

25

30

35

C-25 C-50 C-75 C-100
Memory Capacity

A
ct

iv
e

H
ar

d
Lo

ca
tio

ns
 (%

)

Modified SDM
Original SDM

Figure 2: Pattern distributions of both memories as the size
of the pattern sets increases

In Figure 3 we averaged over the different capacity levels
and evaluated the modified SDM’s sensitivity to partiality in
the encoded patterns.

Activity of Hard Locations v.s. Write Category

0

5

10

15

20

25

30

W0 W1 W2 W3 W4 W5
Write Category

A
ct

iv
e

H
ar

d
Lo

ca
tio

ns
 (%

)

Modified SDM
Original SDM

Figure 3: Pattern distribution of both memories as the
degree of partiality in the stored patterns increases

From Figure 3, we see that as the partiality of the encoded

patterns increased, the modified SDM performed
significantly better than the original SDM. Overall, the
modified SDM responded to an increase in the partiality of
the encoded patterns with a 39.09% net growth in its
activity, while the original SDM reported a net drop of
26.39%.

It is interesting to note that even when the memory was
full (C-100), only 33.05% and 25.01% of the hard locations
in the modified and original SDM respectively were active
(Figure 2). This implies a clustering of the patterns in about
a third of the memory space. These results are consistent
with the notion of SDM’s performance failures for handling
non-random data (Hely, Willshaw , & Hayes, 1997) and in
some sense are a justification for a domain based
initialization approach as opposed to the conventional
random initialization utilized in these experiments.

Convergence Rate
Convergence occurs when the distance between the read cue
and the target pattern is below a threshold distance (the
critical distance (Kanerva 1988), and the iterated read trace
settles on a fixed point. Divergence occurs if any of the
above two conditions established for convergence are
violated. Hence, the convergence rate of a memory can be
defined as the ratio of the number of times it converges to
the number of retrieval operations. Figure 4 presents the
convergence rates of the two memories as the degree of
partiality in the written patterns increased.

Convergence Rate vs. Write Category

0

0.2

0.4

0.6

0.8

1

1.2

W0 W1 W2 W3 W4 W5
Write Category

C
on

ve
rg

en
ce

 R
at

e

Modified SDM
Original SDM

Figure 4: Convergence rate of both memories as the degree
of partiality in the stored patterns increases

From Figure 4, it is clear that the original SDM converged
more rapidly than the modified SDM. Its convergence rates
gradually grew as the level of partiality in the encoded
patterns increased, with a 27.71% net growth over the W0-
W5 interval. The modified SDM showed about a 22.17%
drop in its convergence rates over the same write interval. It
first showed an initial drop in the convergence rate during
the W0 to W1 transition, followed by a sharp jump from W1
to W2, a small increase from W2 to W3, and finally two
sharp drops (W3 to W4 and W4 to W5). Intuitively, this
suggests that between the W1 to W3 range, partiality in the
encoded patterns actually effected greater convergence in
the modified SDM system.

A closer look at Figure 4, shows that within the W2-W5
range, the original SDM reports almost 100% convergence.
However, considering the highly partial read cues used for
retrieval and the modest convergence rates reported by the
modified SDM, one would suspect that the patterns
retrieved by the original SDM are false positives. This
suspicion is realized by assessing the quality of retrieval of
both memory systems.

Quality of Retrieval
Convergence rate by itself can be misleading because the
retrieval content is ignored. Having a very high convergence
rate with low retrieval quality is equivalent to a false
positive. Therefore, we coupled retrieval content with
convergence rates in order to quantify retrieval quality. The
quality of retrieval of a memory is the ratio of the traces
perfectly retrieved to the frequency of its convergence.
Figure 5 compares the quality of retrieval of both memories
along the different write categories.

We see that the modified SDM significantly outperformed
the original SDM across the different write categories.
Retrieval quality of the original SDM gradually dropped to
zero on the advent of partiality in the encoded patterns with
a 99.76% net drop over the W0 to W5 range. The modified
SDM exhibited a net growth of 127.01% over the same
range indicating that the memory really “knows what it
knows”.

Quality of Retrieval vs. Write Category

-0.05

0.05

0.15

0.25

0.35

W0 W1 W2 W3 W4 W5
Write Category

Q
ua

lit
y

of
 R

et
rie

va
l

Modified SDM
Original SDM

Figure 5: Quality of retrieval of both memories as the
degree of partiality in the stored patterns increases

Retrieval Performance
The convergence rate and the quality of retrieval metrics are
useful for a low level retrieval analysis. However, they do
not provide a global view into the retrieval process.
Additionally, one of the problems with the quality of the
retrieval metric is that it requires perfect retrieval. It can be
argued that perfect retrieval is not a fundamental
requirement, if a level of post-processing by virtue of
approximate string matching algorithms (Knuth, 1977) is
employed. Therefore, the tests were evaluated using a
metric that is based on the number of features fully
recovered in the retrieval process. A feature was considered
to be fully retrievable if no more than two of its characters
were incorrect and hence could be recovered fully with post
processing. The scoring of the retrieved episodes was based
on the following scale: (1) All features fully retrieved were
scored as 1.0; (2) All but one feature fully retrieved were
scored as 0.75; (3) All but two features fully retrieved were
scored as 0.5; (4) Retrievals that were incorrectly retrieved,
with more than two irretrievable features, or diverged reads
were scored as 0. Figure 6 illustrates the retrieval
performance of the modified and original SDM systems
across the different write categories.

Figure 6 shows that the performance of the original SDM
dwindled with an increase in partiality of the write patterns.
Its performance curve was loosely linear with a net drop of
42.93% over the W0 to W5 range. The corresponding
performance curve of the modified SDM exhibited an
interesting behavior. It showed a steady 150.67% growth
from W0 to W2, a smaller rise to a peak at W3, followed by
a gradual drop from W3 to W5. This indicates that
extension of the content-space to include the “don’t cares”
(*) provided a significant improvement as the percentage of
missing features in the memory writes increased to a
reasonable degree. Hence, doing partial writes is
advantageous as “don’t cares” affect more rapid
convergences due to the modification to the Hamming
distance calculation.

Retrieval Performance vs. Write Category

0

0.1

0.2

0.3

0.4

0.5

W0 W1 W2 W3 W4 W5
Write Category

R
et

rie
va

l P
er

fo
rm

an
ce

Modified SDM
Original SDM

Figure 6: Retrieval performance of both memories as the

degree of partiality in the stored patterns increases

Memory Capacity
All retrieval results presented so far have been averaged
over the sizes of different pattern sets. As stated above, the
size of a pattern set is analogous to memory capacity. Figure
7 shows four curves, each representing the performance of
the modified SDM when the memory was filled to
approximately 25%, 50%, 75%, and 100% capacity.

We see that a moderate increase in the partiality of the
encoded patterns improved performance. This moderate
increase lies somewhere in the W1-W3 range (12.5% to
62.5% partiality). An increase in partiality at this point
affects performance.

The original SDM showed a zero performance score for
all experiments in which the memory was filled above 50%
of its capacity (C-75, C-100), irrespective of the partiality in
the encoded patterns as well as the retrieval cues. Therefore,
we can claim that the modifications proposed to the SDM
system definitely reduced some of its capacity problems.

Retrieval Performance vs. Write Category

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

W0 W1 W2 W3 W4 W5
Write Category

R
et

rie
va

l P
er

fo
rm

an
ce

C-25
C-50
C-75
C-100

Figure 7: Retrieval performance of the modified SDM
system for four different pattern sets as the partiality in the

stored patterns increases

Discussion
The modified SDM system used as a TEM promises a
significant performance improvement over the original
SDM system. The extensive experimental simulations
revealed that in all cases the modified SDM system

outperformed the original SDM system. It constrains
interference by efficiently distributing the encoded patterns
across the hard locations in the memory space. Its abilities
in encoding partial patterns and retrieving with partial cues
are also significantly better than the original SDM.
Interestingly, a reasonable degree of “don’t cares” in the
patterns improves performance as they act as attractor
basins due to the modification to the Hamming distance
calculation. Finally, the modified SDM system also
alleviates some of the problems related to text encoding
demonstrated by its improved retrieval quality when
compared to the original SDM system (Figure 5).

The Hamming Distance calculations used for all the
experiments set the distance between a 0, or a 1 and a don’t
care (*) to 0.5. Although the tests indicate that this
modification was highly beneficial, there may be scope for
further improvement. When the distance between a 0, or 1
and a * is set to 0, patterns with don’t care’s act as extreme
attractors. Additionally, if the distance between a 0, or 1 and
a * is set to 1, the same patterns would act as repellers.
Simulations that vary this distance by incrementally
selecting values between 0 and 1 would be quite insightful.

Another worthy area of investigation is domain based
initialization techniques. As the simulated tests revealed,
even when the memory was filled to its capacity, about two
thirds of the virtual processing cells (hard locations) were
unused. Given the memory and computational constraints of
the computing systems that software agents ‘reside’ in and
hence, the constraints on the number of hard locations that
such agents’ TEM can have, we hypothesize that domain-
based initialization mechanisms for the Modified SDM will
further improve performance.

Conclusions
This paper argues that the modified SDM system is a
suitable computational model for TEM in cognitive
software agents. The simulations show that it outperforms
the original SDM system in its ability to encode text based
episodic data. Although, a simple text based domain was
used in the work reported here, we speculate that the
modified SDM system will show a significant performance
improvement in a domain using less formal representations
such as perceptual symbols (Barsalou, 1999). This
motivates its use as a TEM for autonomous robots that are
structurally coupled with the real world.

Acknowledgments
The second author is supported in part by NIH Cancer
Center Support CORE grant, P30 CA-21765 and by the
American Lebanese Syrian Associated Charities (ALSAC).
The authors acknowledge the support of Dr. Lee McCauley,
Matthew Ventura, Amy Witherspoon, and the Conscious
Software Research Group (http://csrg.cs.memphis.edu).

References
Anwar, A., & Franklin, S. (2003). Sparse Distributed

Memory for "Conscious" Software Agents. Cognitive
Systems Research, 4, 339-354.

Baars, Bernard J. (1988). A Cognitive Theory of
Consciousness. Cambridge: Cambridge University Press.

Baars, Bernard J. (1997). In the Theater of Consciousness.
Oxford: Oxford University Press.

Baars, B. J., and S. Franklin. 2003. How conscious
experience and working memory interact. Trends in
Cognitive Science 7:166-172.

Baddeley, A. D. (2000). The episodic buffer: A new
component of working memory? Trends in Cognitive
Science, 4, 417-423.

Baddeley, A., M. Conway, & Aggleton, J. (2001). Episodic
Memory. Oxford: Oxford University Press.

Conway, M. A. (2001). Sensory-perceptual episodic
memory and its context: Autobiographical memory. In A.
Baddeley, M. Conway, & J. Aggleton (Eds.), Episodic
Memory. Oxford: Oxford University Press.

Fillmore, C. (1968). The case for case. In E. Bach & R. T.
Harms (Eds.), Universals in Linguistic Theory,. New
York: Holt, Rinehart and Wilson.

Franklin, S. (1997). Autonomous Agents as Embodied AI.
Cybernetics and Systems' Special issue on
Epistemological Aspects of Embodied AI, 28:6, 499-520.

Franklin, S. (2001). Conscious Software: A Computational
View of Mind. In V. Loia & S. Sessa (Eds.), Soft
Computing Agents: New Trends for Designing
Autonomous Systems. Berlin: Springer (Physica: Verlag).

Franklin, S., B. J. Baars, U. Ramamurthy, and M. Ventura.
in review. The Role of Consciousness in Memory. .

Hely, T. A., Willshaw, D. J. & Hayes, G. M. (1997). A
New Approach to Kanerva’s Sparse Distributed Memory.
IEEE Transactions on Neural Networks, 8(3), 791-794.

Kanerva, P. (1988). Sparse Distributed Memory. Cambridge
MA: The MIT Press.

Kanerva, P. (1993). Sparse Distributed Memory and related
models. In M. H. Hassoun (Ed.), Associative Neural
Memories: Theory and Implementation. (pp. 50-76). New
York: Oxford University Press

Keeler, J. D. (1988). Comparison Between Kanerva's SDM
and Hopfield-Type Neural Networks. Cognitive Science,
12:3, 299-329.

Knuth, D. E., Morris, J. H. & Pratt, V. R. (1977). Fast
pattern matching in strings. SIAM Journal on Computing,
6, 323-350.

Ramamurthy, U., D’Mello, S. K., & Franklin, S. (May,
2003). Modeling Memory Systems with Global
Workspace Theory. Seventh Conference of the
Association for the Scientific Study of Consciousness -
ASSC7

Ramamurthy, U., D'Mello, S., & Franklin, S. (October,
2004). Modified Sparse Distributed Memory as Transient
Episodic Memory for Cognitive Software Agents.
Proceedings of the International Conference on Systems,
Man and Cybernetics. The Hague, Netherlands.

Shastri, L. (2002). Episodic memory and cortico
hippocampal interactions TRENDS in Cognitive Sciences,
6:4, 162-168.

	Introduction
	Sparse Distributed Memory
	The Modified SDM system

	Experimental Analysis & Results
	Experimental Setup
	Memory Architecture
	Pattern Selection

	Results & Discussion
	Pattern Distribution
	Convergence Rate
	Quality of Retrieval
	Retrieval Performance

	Discussion
	Conclusions
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

