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Abstract 

This paper presents detailed simulation results on a modified 
Sparse Distributed Memory (SDM) system. We have 
modified Kanerva’s original SDM system into an architecture 
with a ternary memory space. This enables the memory to be 
used as a Transient Episodic Memory (TEM) in cognitive 
software agents. TEM is a memory with high specificity and 
low retention, used for events having features of a particular 
time and place. Our earlier work focused on perfunctory, 
proof of concept assessments on the modified SDM system. 
This paper presents a detailed experimental evaluation of the 
modified SDM system with regard to its ability to store and 
retrieve episodic information. 

Introduction 
Episodic memory is for events having features of a 
particular time and place (Baddeley et al, 2001). This 
memory system is associative in nature and content-
addressable. It has been proposed that working memory 
probably includes an episodic buffer that can hold episodic 
information for a short duration (Baddeley, 2000). 

Humans have a content-addressable, associative, transient 
episodic memory with a decay rate measured in hours 
(Conway, 2001). Humans are able to recall in great detail 
events of the current day – where they park their cars, whom 
they met that morning, what they discussed, what they had 
for meals, etc. These details of the events/episodes stay with 
us only for short durations – for some hours. We 
hypothesize that for cognitive agents to recall such details of 
episodes while they interact with and adapt to their dynamic 
environments, they need a transient episodic memory 
(TEM). The Intelligent Distribution Agent (IDA) is one 
such cognitive software agent endowed with a TEM (Baars, 
& Franklin. 2003, Franklin et al in review). 

IDA is a cognitive software agent (Franklin, 1997) 
developed for the U.S. Navy. At the end of each sailor’s 
tour of duty, he or she is assigned to a new billet by a person 
called a detailer. IDA’s task is to facilitate this process by 
completely automating the role of a detailer. The IDA 
technology (Franklin, 2001) has a number of different 
memory systems, including working memory, transient 

episodic memory, and autobiographical/declarative memory 
(Ramamurthy, D’Mello, & Franklin, 2003).  We 
hypothesize that information stored in TEM,  which has not 
decayed away, is consolidated into declarative memory at 
certain intervals. 

Transient episodic and declarative memories have 
distributed representations in IDA. There is evidence that 
this is also the case in animal nervous systems. Some of 
these memory models are motivated by Sparse Distributed 
Memory (Kanerva, 1988).  This is reasonable due to several 
similarities between SDM and human memory systems such 
as knowing that one knows, tip-of-the-tongue effect, 
rehearsal, momentary feelings of familiarity, and 
interference. The focus of this paper is on a modified SDM 
architecture that promises to be a good candidate for use as 
a TEM in software agents such as IDA. 

Sparse Distributed Memory 
SDM implements a content-addressable random access 
memory. Its address space is in the order of 21000. Of this 
space, you choose a manageable, uniform random sample, 
say 220, of allowable locations. These are called hard 
locations. Thus the hard locations are sparse in this address 
space. Many hard locations participate in storing and 
retrieving of any datum, resulting in the distributed nature of 
this architecture. Hamming distance is used to measure the 
distance between any two points in this memory space.  

Each hard location is a bit vector of length 1000, storing 
data in 1000 counters with a range of -40 to 40. Each datum 
to be written to SDM is a bit vector of length 1000. Writing 
1 to a counter results in incrementing the counter, while 
writing a 0 decrements the counter. To write in this memory 
architecture, you select an access sphere centered at location 
X. So, to write a datum to X, you simply write to all the 
hard locations (typically 1000 of them) within X’s access 
sphere. This results in distributed storage. This also 
naturally provides for memory rehearsal – a memory trace 
being rehearsed can be written many times and each time to 
about 1000 locations. 

 Similar to writing, retrieving from SDM involves the 
same concept of access sphere – you read all the hard 



locations within the access sphere of location Y, pool the bit 
vectors read from all these hard locations and let each of the 
kth

 bits of those locations participate in a majority vote for 
the kth

 bit of Y. Effectively, you reconstruct the memory 
trace in every retrieval operation.  Effectively, the read data 
at Y is an aggregate of all data that have been written to the 
hard locations within Y’s access sphere, but may not be any 
of them exactly. 

Furthermore, this memory can be cued with noisy 
versions of the original memory trace. To accomplish this, 
you employ iterated reading – first read at Y to obtain the 
bit vector, Y1. Next read at Y1 to obtain the bit vector Y2. 
Next read at Y2 to obtain the bit vector, Y3. If this sequence 
of reads converges to Y', then Y' is the result of iterated 
reading at Y.  

The Modified SDM system 
Our experimental evaluation of Kanerva’s original SDM for 
cognitive agents such as IDA that encode text based 
episodic data, indicated the need for an architecture 
modification. Episodic data refers to patterns with features 
of what, where, and when. Preliminary investigations that 
assessed SDM’s ability to encode text based episodic data 
revealed two fundamental shortcomings. When events are 
unfolding, the feature vector is not always complete. So, 
more often, the agent has to store partial feature sets. 
Similarly, when the agent cues its memory for retrieval, the 
retrieval cues are often partial feature-sets. SDM has no 
generic mechanism to handle partiality in the stored patterns 
as well as in the retrieval cues. It considers missing features 
to be random noise, thereby severely effecting performance.  

The second major problem with SDM is its inability to 
handle text. Since SDM operates in a Boolean space, 
encoding text requires binary representations of characters. 
A simple way to enforce this mapping is by encoding the 
ASCII representation of characters. For example, the feature 
“dog”, would be represented as “01100100 01101111 
01100111”. Since interference from related features effects 
the retrieved trace, error in recall is introduced. During the 
recall procedure, if the second bit of each character in the 
binary representation of dog is flipped, the resultant binary 
patterns is “00100100 00101111 00100111”. Converting 
this recalled binary pattern into text would result in “$/'”, 
which at the character level bears absolutely no similarity to 
“dog.” This example shows that a 12.5% error in the 
retrieval process can completely distort the feature.  

The modified SDM system (Ramamurthy et al, 2004) 
alleviates several of the shortcomings identified with using 
SDM as a computational model for TEM. The modification 
includes migrating to a ternary memory space while 
maintaining a binary address space for the hard locations. 
Adding “don’t cares” (*’s) to the 0’s and 1’s of the binary 
space yields a ternary memory space. This accommodates 
flexible cuing with fewer features than the actual memory 
trace where missing features are represented by “don’t 
cares” (*). An adjustment was made to Hamming distance 
calculations such that the distance between a “don’t care” 
(*) and a 0 or 1 was set to (0.5).  

This modification to the memory space also addresses two 
essential features of episodic memory systems (Shastri, 
2002). Episodic memory systems must have binding-error 
detectors and binding-error integrators. Given an event, the 
episodic memory trace must respond not only to partial 
cues, it should also be capable of distinguishing a 
memorized event from very similar events.  

Previously simulated experiments revealed that the 
modified SDM system produces a significant performance 
improvement over the original SDM system (Ramamurthy, 
et al, 2004). However, the extent of the improvement was 
not formally quantified. Furthermore, several system 
parameters that maximize performance were not 
investigated. Hence, the experiments presented here attempt 
to systematically assess performance of the modified SDM 
system’s ability to encode and retrieve episodic information 
with variable system parameters. These include upper and 
lower bounds on the degree of partiality in the encoded 
patterns and the retrieval cues and the size of the pattern set. 

Experimental Analysis & Results 
The primary focus of the experiments was to compare 
performance of the modified and the original SDM 
regarding its ability to encode episodic data. Therefore, the 
experiments evaluated performance of the two memory 
systems when patterns encoded into the memory had an 
increasing degree of partiality (missing features in the 
pattern). Retrieval was tested with fully specified read-cues 
and partial read-cues (binding-integration). Performance of 
the modified SDM system when presented with binding-
errors in the retrieval cues have been investigated elsewhere 
(Ramamurthy et al, 2004). 

The experiments also evaluated whether the modified 
SDM reduces some of SDM’s capacity problems. SDM has 
been criticized for its relatively low memory capacity 
(Keeler, 1988). We evaluated memory capacity by testing 
storage and retrieval performance with pattern sets that fill 
the memory to approximately 25%, 50%, 75%, and 100% 
capacity.  

Experimental Setup 
The experiments were conducted by randomly initializing 
100 memories. A memory in this context refers to a fully 
initialized SDM simulation. All performance results were 
averaged over these 100 memories. This approach controls 
for any bias in the results that may be introduced by the 
random memory initialization. All experiments were run on 
both the modified as well as the original SDM systems. 
Tests were conducted at 4 different memory capacity levels 
(C-25 ... C-100): namely 25%, 50%, 75%, and 100% (at 
capacity). 
 
Memory Architecture 
Each memory was randomly initialized with 10,000 hard 
locations. A larger sample of hard locations was avoided 
due to computational limitations. The capacity of a 10,000 
hard-location-memory, when cued with the exact addresses 
of the stored patterns, is approximately 1000 patterns, since 



the capacity of SDM is estimated to be 10% of the number 
of hard locations (Kanerva, 1988). However, when the 
memory is cued with noisy versions of the stored patterns its 
capacity greatly decreases to about 1-5% of the number of 
hard locations (Kanerva, 1993). Since our experiments 
involve encoding episodic data, the stored patterns as well 
as the retrieval cues had high partiality. Hence, an estimate 
of capacity based on episodic data was taken to be 1% of the 
number of hard locations. Therefore, in order to fill the 
memory to 25% capacity, 24 episodes were encoded; to fill 
memory to 50% capacity, 48 episodes were encoded, etc. 
Further, a model for TEM does not enforce stringent 
capacity requirements due to TEM’s low retention, which 
can be enforced via an appropriate decay mechanism. 

The dimensionality of the memory space was set at 448, 
based on the case-grammar template (Fillmore, 1968) used 
in the experiments. The case-grammar template selected is 
illustrated in Figure 1, with examples of fully specified 
feature-sets and partially specified feature-sets representing 
patterns used for encoding and retrieval.  
 
Pattern Selection 
Tests at each capacity level included 6 memory write sets 
(W0 … W5), each with an increasing degree of partiality in 
the patterns. Patterns in set W0 were fully specified (no 
“don’t cares”), while patterns in set W5 had 5 “don’t cares” 
(62.5% partiality). “Nathan accepts * Michael venture 
scheme eatery *” is an example of a partial memory-write 
for the W2 category (2 “don’t cares”). Here, the recipient-
adjective and the time features have been replaced with 
“don’t cares” (*). The number of patterns within each write 
set was specified by the level of capacity being tested. 

Retrieval on each memory write set (W0 ... W5) was 
tested by 4 read-cue sets (R0 ... R3), each with an increasing 
degree of missing features in addition to the missing 
features of the write sets. As an example, consider a 62.5 % 
partial read-cue: “Nathan * * * venture scheme * *”.  This is 
a R3 read-cue as it contains three missing features in 
addition to the two missing features in the encoded pattern 
shown above. The number of patterns within each read-cue 
set was the same as the write set that it is being tested on. 

 
 

Figure 1: Case-grammar template 

Results & Discussion 
The encoding efficiency of the Modified SDM system was 
compared to the original SDM system by assessing its 
pattern distribution and interference reduction abilities. 
Retrieval performance was estimated by assessing the 
convergence rate (retrieval rate), the quality of retrieval, and 
by a novel performance metric. 

According to the experimental design, retrieval of every 
pattern in each write set (W0 ... W5) was evaluated by 4 
different read cue sets (R0 ... R4). Due to space constraints, 
the retrieval results presented below have been averaged 
over these four different read cue sets. 

 
Pattern Distribution 
The distributed nature of SDM’s architecture requires that a 
pattern should be encoded to approximately 1% of the hard 
locations. Although, such a distributed representation is 
beneficial in terms of its ability to handle partial failure, it 
introduces severe interference problems. Interference refers 
to large overlaps between the access spheres of related 
patterns. This is due to the hard locations being randomly 
initialized, while the encoded patterns are not evenly 
distributed and tend to cluster in the memory space. To 
account for this phenomenon, we introduced a simple 
measure to assess the distribution of a set of patterns in the 
memory space called the activity. A hard location is said to 
be active if it is involved in encoding at least one pattern. 
The activity of a memory is simply the percentage of its 
hard locations that are active. Therefore, as the memory is 
filled to its capacity, a good distribution should demand that 
its activity should proportionally increase. Figure 2 presents 
a comparison of the activity of the original and modified 
SDM as the memory was filled to capacity.  

From Figure 2, we see the activities of both memories 
increased as the size of the pattern set increased (analogous 
to the memory being filled to capacity). The activity of the 
modified SDM was on an average 5.19% higher than the 
original SDM. This indicates that the modified SDM was 
more effective in distributing patterns with partial features 
even as the memory was filled to capacity. 
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Figure 2: Pattern distributions of both memories as the size 
of the pattern sets increases 

 



In Figure 3 we averaged over the different capacity levels 
and evaluated the modified SDM’s sensitivity to partiality in 
the encoded patterns. 
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Figure 3: Pattern distribution of both memories as the 
degree of partiality in the stored patterns increases 

 
From Figure 3, we see that as the partiality of the encoded 

patterns increased, the modified SDM performed 
significantly better than the original SDM.  Overall, the 
modified SDM responded to an increase in the partiality of 
the encoded patterns with a 39.09% net growth in its 
activity, while the original SDM reported a net drop of 
26.39%. 

It is interesting to note that even when the memory was 
full (C-100), only 33.05% and 25.01% of the hard locations 
in the modified and original SDM respectively were active 
(Figure 2). This implies a clustering of the patterns in about 
a third of the memory space. These results are consistent 
with the notion of SDM’s performance failures for handling 
non-random data (Hely, Willshaw , & Hayes, 1997) and in 
some sense are a justification for a domain based 
initialization approach as opposed to the conventional 
random initialization utilized in these experiments. 
 
Convergence Rate 
Convergence occurs when the distance between the read cue 
and the target pattern is below a threshold distance (the 
critical distance (Kanerva 1988), and the iterated read trace 
settles on a fixed point. Divergence occurs if any of the 
above two conditions established for convergence are 
violated. Hence, the convergence rate of a memory can be 
defined as the ratio of the number of times it converges to 
the number of retrieval operations. Figure 4 presents the 
convergence rates of the two memories as the degree of 
partiality in the written patterns increased. 
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Figure 4: Convergence rate of both memories as the degree 
of partiality in the stored patterns increases 

 
From Figure 4, it is clear that the original SDM converged 
more rapidly than the modified SDM. Its convergence rates 
gradually grew as the level of partiality in the encoded 
patterns increased, with a 27.71% net growth over the W0-
W5 interval. The modified SDM showed about a 22.17% 
drop in its convergence rates over the same write interval. It 
first showed an initial drop in the convergence rate during 
the W0 to W1 transition, followed by a sharp jump from W1 
to W2, a small increase from W2 to W3, and finally two 
sharp drops (W3 to W4 and W4 to W5). Intuitively, this 
suggests that between the W1 to W3 range, partiality in the 
encoded patterns actually effected greater convergence in 
the modified SDM system. 

A closer look at Figure 4, shows that within the W2-W5 
range, the original SDM reports almost 100% convergence. 
However, considering the highly partial read cues used for 
retrieval and the modest convergence rates reported by the 
modified SDM, one would suspect that the patterns 
retrieved by the original SDM are false positives. This 
suspicion is realized by assessing the quality of retrieval of 
both memory systems. 
 
Quality of Retrieval 
Convergence rate by itself can be misleading because the 
retrieval content is ignored. Having a very high convergence 
rate with low retrieval quality is equivalent to a false 
positive. Therefore, we coupled retrieval content with 
convergence rates in order to quantify retrieval quality. The 
quality of retrieval of a memory is the ratio of the traces 
perfectly retrieved to the frequency of its convergence. 
Figure 5 compares the quality of retrieval of both memories 
along the different write categories.  

We see that the modified SDM significantly outperformed 
the original SDM across the different write categories. 
Retrieval quality of the original SDM gradually dropped to 
zero on the advent of partiality in the encoded patterns with 
a 99.76% net drop over the W0 to W5 range. The modified 
SDM exhibited a net growth of 127.01% over the same 
range indicating that the memory really “knows what it 
knows”. 
 



Quality of Retrieval vs. Write Category
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Figure 5: Quality of retrieval of both memories as the 
degree of partiality in the stored patterns increases 

 
Retrieval Performance 
The convergence rate and the quality of retrieval metrics are 
useful for a low level retrieval analysis. However, they do 
not provide a global view into the retrieval process. 
Additionally, one of the problems with the quality of the 
retrieval metric is that it requires perfect retrieval. It can be 
argued that perfect retrieval is not a fundamental 
requirement, if a level of post-processing by virtue of 
approximate string matching algorithms (Knuth, 1977) is 
employed. Therefore, the tests were evaluated using a 
metric that is based on the number of features fully 
recovered in the retrieval process. A feature was considered 
to be fully retrievable if no more than two of its characters 
were incorrect and hence could be recovered fully with post 
processing. The scoring of the retrieved episodes was based 
on the following scale: (1) All features fully retrieved were 
scored as 1.0; (2) All but one feature fully retrieved were 
scored as 0.75; (3) All but two features fully retrieved were 
scored as 0.5; (4) Retrievals that were incorrectly retrieved, 
with more than two irretrievable features, or diverged reads 
were scored as 0. Figure 6 illustrates the retrieval 
performance of the modified and original SDM systems 
across the different write categories. 

Figure 6 shows that the performance of the original SDM 
dwindled with an increase in partiality of the write patterns. 
Its performance curve was loosely linear with a net drop of 
42.93% over the W0 to W5 range. The corresponding 
performance curve of the modified SDM exhibited an 
interesting behavior. It showed a steady 150.67% growth 
from W0 to W2, a smaller rise to a peak at W3, followed by 
a gradual drop from W3 to W5.  This indicates that 
extension of the content-space to include the “don’t cares” 
(*) provided a significant improvement as the percentage of 
missing features in the memory writes increased to a 
reasonable degree. Hence, doing partial writes is 
advantageous as “don’t cares” affect more rapid 
convergences due to the modification to the Hamming 
distance calculation. 
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Figure 6: Retrieval performance of both memories as the 

degree of partiality in the stored patterns increases 
 
Memory Capacity 
All retrieval results presented so far have been averaged 
over the sizes of different pattern sets. As stated above, the 
size of a pattern set is analogous to memory capacity. Figure 
7 shows four curves, each representing the performance of 
the modified SDM when the memory was filled to 
approximately 25%, 50%, 75%, and 100% capacity.  

We see that a moderate increase in the partiality of the 
encoded patterns improved performance. This moderate 
increase lies somewhere in the W1-W3 range (12.5% to 
62.5% partiality). An increase in partiality at this point 
affects performance. 

The original SDM showed a zero performance score for 
all experiments in which the memory was filled above 50% 
of its capacity (C-75, C-100), irrespective of the partiality in 
the encoded patterns as well as the retrieval cues. Therefore, 
we can claim that the modifications proposed to the SDM 
system definitely reduced some of its capacity problems. 
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Figure 7: Retrieval performance of the modified SDM 
system for four different pattern sets as the partiality in the 

stored patterns increases 
 

Discussion 
The modified SDM system used as a TEM promises a 
significant performance improvement over the original 
SDM system. The extensive experimental simulations 
revealed that in all cases the modified SDM system 



outperformed the original SDM system. It constrains 
interference by efficiently distributing the encoded patterns 
across the hard locations in the memory space. Its abilities 
in encoding partial patterns and retrieving with partial cues 
are also significantly better than the original SDM. 
Interestingly, a reasonable degree of “don’t cares” in the 
patterns improves performance as they act as attractor 
basins due to the modification to the Hamming distance 
calculation. Finally, the modified SDM system also 
alleviates some of the problems related to text encoding 
demonstrated by its improved retrieval quality when 
compared to the original SDM system (Figure 5).  

The Hamming Distance calculations used for all the 
experiments set the distance between a 0, or a 1 and a don’t 
care (*) to 0.5. Although the tests indicate that this 
modification was highly beneficial, there may be scope for 
further improvement. When the distance between a 0, or 1 
and a * is set to 0, patterns with don’t care’s act as extreme 
attractors. Additionally, if the distance between a 0, or 1 and 
a * is set to 1, the same patterns would act as repellers. 
Simulations that vary this distance by incrementally 
selecting values between 0 and 1 would be quite insightful.  

Another worthy area of investigation is domain based 
initialization techniques. As the simulated tests revealed, 
even when the memory was filled to its capacity, about two 
thirds of the virtual processing cells (hard locations) were 
unused. Given the memory and computational constraints of 
the computing systems that software agents ‘reside’ in and 
hence, the constraints on the number of hard locations that 
such agents’ TEM can have, we hypothesize that domain-
based initialization mechanisms for the Modified SDM will 
further improve performance. 

Conclusions 
This paper argues that the modified SDM system is a 
suitable computational model for TEM in cognitive 
software agents. The simulations show that it outperforms 
the original SDM system in its ability to encode text based 
episodic data. Although, a simple text based domain was 
used in the work reported here, we speculate that the 
modified SDM system will show a significant performance 
improvement in a domain using less formal representations 
such as perceptual symbols (Barsalou, 1999). This 
motivates its use as a TEM for autonomous robots that are 
structurally coupled with the real world. 
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